Given positive integers $m, n$, a fractional assignment $x \in [0,1]^{m \times n}$ and weights $d \in \mathbb{R}^n_{>0}$, we show that there exists an assignment $y \in \{0,1\}^{m \times n}$ so that for every $i\in[m]$ and $t\in [n]$, \[ \Big|\sum_{j \in [t]} d_j (x_{ij} - y_{ij}) \Big| < \max_{j \in [n]} d_j. \] This generalizes a result of Tijdeman (1973) on the unweighted version, known as the chairman assignment problem. This also confirms a special case of the single-source unsplittable flow conjecture with arc-wise lower and upper bounds due to Morell and Skutella (IPCO 2020). As an application, we consider a scheduling problem where jobs have release times and machines have closing times, and a job can only be scheduled on a machine if it is released before the machine closes. We give a $3$-approximation algorithm for maximum flow-time minimization.
翻译:给定正整数 $m, n$、分数分配 $x \in [0,1]^{m \times n}$ 及权重 $d \in \mathbb{R}^n_{>0}$,我们证明存在一个分配 $y \in \{0,1\}^{m \times n}$,使得对于任意 $i\in[m]$ 和 $t\in [n]$,满足 \[ \Big|\sum_{j \in [t]} d_j (x_{ij} - y_{ij}) \Big| < \max_{j \in [n]} d_j. \] 该结果推广了 Tijdeman (1973) 关于未加权版本(即主席分配问题)的结论。同时,这证实了 Morell 与 Skutella (IPCO 2020) 提出的具有弧向上下界约束的单源不可分流猜想的一个特例。作为应用,我们考虑一个调度问题:作业具有释放时间,机器具有关闭时间,且作业仅能在机器关闭前释放时被调度。针对最大流时间最小化问题,我们提出了一个 $3$-近似算法。