Quantum algorithms to integrate nonlinear PDEs governing flow problems are challenging to discover but critical to enhancing the practical usefulness of quantum computing. We present here a near-optimal, robust, and end-to-end quantum algorithm to solve time-dependent, dissipative, and nonlinear PDEs. We embed the PDEs in a truncated, high dimensional linear space on the basis of quantum homotopy analysis. The linearized system is discretized and integrated using finite-difference methods that use a compact quantum algorithm. The present approach can adapt its input to the nature of nonlinearity and underlying physics. The complexity estimates improve existing approaches in terms of scaling of matrix operator norms, condition number, simulation time, and accuracy. We provide a general embedding strategy, bounds on stability criteria, accuracy, gate counts and query complexity. A physically motivated measure of nonlinearity is connected to a parameter that is similar to the flow Reynolds number $Re_{\textrm{H}}$, whose inverse marks the allowed integration window, for given accuracy and complexity. We illustrate the embedding scheme with numerical simulations of a one-dimensional Burgers problem. This work shows the potential of the hybrid quantum algorithm for simulating practical and nonlinear phenomena on near-term and fault-tolerant quantum devices.
翻译:针对流动问题中非线性偏微分方程的量子积分算法虽难以构建,但对提升量子计算的实际应用价值至关重要。本文提出一种近乎最优、鲁棒且端到端的量子算法,用于求解含时、耗散型非线性偏微分方程。基于量子同伦分析,我们将偏微分方程嵌入截断的高维线性空间。该线性化系统通过采用紧凑量子算法的有限差分法进行离散化与积分。本方法能根据非线性特性与底层物理机制自适应调整输入参数。在矩阵算子范数缩放、条件数、模拟时间与精度等方面,其复杂度估计优于现有方法。我们提供了通用的嵌入策略,以及稳定性判据、精度、门数量与查询复杂度的界。通过构建与流动雷诺数 $Re_{\textrm{H}}$ 相似的参数,将物理启发的非线性度量与允许的积分窗口相关联,该窗口的倒数由给定精度与复杂度决定。我们以一维Burgers问题的数值模拟为例阐释该嵌入方案。本工作展示了混合量子算法在近期及容错量子设备上模拟实际非线性现象的潜力。