The global minimum point of an optimization problem is of interest in engineering fields and it is difficult to be found, especially for a nonconvex large-scale optimization problem. In this article, we consider a new memetic algorithm for this problem. That is to say, we use the continuation Newton method with the deflation technique to find multiple stationary points of the objective function and use those found stationary points as the initial seeds of the evolutionary algorithm, other than the random initial seeds of the known evolutionary algorithms. Meanwhile, in order to retain the usability of the derivative-free method and the fast convergence of the gradient-based method, we use the automatic differentiation technique to compute the gradient and replace the Hessian matrix with its finite difference approximation. According to our numerical experiments, this new algorithm works well for unconstrained optimization problems and finds their global minima efficiently, in comparison to the other representative global optimization methods such as the multi-start methods (the built-in subroutine GlobalSearch.m of MATLAB R2021b, GLODS and VRBBO), the branch-and-bound method (Couenne, a state-of-the-art open-source solver for mixed integer nonlinear programming problems), and the derivative-free algorithms (CMA-ES and MCS).


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月1日
VIP会员
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员