In many fields, including environmental epidemiology, researchers strive to understand the joint impact of a mixture of exposures. This involves analyzing a vector of exposures rather than a single exposure, with the most significant exposure sets being unknown. Examining every possible interaction or effect modification in a high-dimensional vector of candidates can be challenging or even impossible. To address this challenge, we propose a method for the automatic identification and estimation of exposure sets in a mixture with explanatory power, baseline covariates that modify the impact of an exposure and sets of exposures that have synergistic non-additive relationships. We define these parameters in a realistic nonparametric statistical model and use machine learning methods to identify variables sets and estimate nuisance parameters for our target parameters to avoid model misspecification. We establish a prespecified target parameter applied to variable sets when identified and use cross-validation to train efficient estimators employing targeted maximum likelihood estimation for our target parameter. Our approach applies a shift intervention targeting individual variable importance, interaction, and effect modification based on the data-adaptively determined sets of variables. Our methodology is implemented in the open-source SuperNOVA package in R. We demonstrate the utility of our method through simulations, showing that our estimator is efficient and asymptotically linear under conditions requiring fast convergence of certain regression functions. We apply our method to the National Institute of Environmental Health Science mixtures workshop data, revealing correct identification of antagonistic and agonistic interactions built into the data. Additionally, we investigate the association between exposure to persistent organic pollutants and longer leukocyte telomere length.


翻译:暂无翻译

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员