In this paper, we propose a novel adaptive decoding mechanism (ADM) for the unmanned aerial vehicle (UAV)-enabled uplink (UL) non-orthogonal multiple access (NOMA) communications. Specifically, considering a harsh UAV environment where ground-to-ground links are regularly unavailable, the proposed ADM overcomes the challenging problem of conventional UL-NOMA systems whose performance is sensitive to the transmitter's statistical channel state information and the receiver's decoding order. To evaluate the performance of the ADM, we derive closed-form expressions for the system outage probability (OP) and throughput. In the performance analysis, we provide novel expressions for practical air-to-ground and ground-to-air channels while taking into account the practical implementation of imperfect successive interference cancellation (SIC) in UL-NOMA. These results have not been previously reported in the technical literature. Moreover, the obtained expression can be adopted to characterize the OP of various systems under a Mixture of Gamma (MG) distribution-based fading channels. Next, we propose a sub-optimal Gradient Descent-based algorithm to obtain the power allocation coefficients that result in maximum throughput with respect to each location on UAV's trajectory, which follows a random waypoint mobility model for UAVs. Numerical solutions show that the ADM significantly improves the performance of UAV-enabled UL-NOMA, particularly in mobile environments.
翻译:在本文中,我们建议为无人驾驶飞行器(UAV)驱动的非横向多连接(NOMA)通信提供新型的适应解码机制(ADM ) 。 具体地说,考虑到无人驾驶飞行器(UL)的非横向多端连接(NOMA)通信经常无法进入的严酷环境,拟议的ADM克服了传统UL-NOMA系统的挑战性问题,这些系统的运作对发射机的统计渠道国家信息和接收器的解码程序十分敏感。为了评估ADM的性能,我们为系统出错概率(OP)和吞吐提供了闭式表达方式。在绩效分析中,我们为实际的空对地和地对空通道提供了新的表达方式,同时考虑到UL-NOMA连续取消干扰(SIC)不完善的实际实施。这些结果以前没有在技术文献中报告过。 此外,可以采用获得的表达方式来描述各种系统在UMAMM(MG)基于分布的淡化渠道下的 OPO。 其次,我们提议一个亚平面直系直系直系直系直系直系次表达式表达式表达方式,通过AAVAVDR的频率定位定位定位定位,在最大定位定位定位定位定位定位定位定位定位定位定位定位定位上,通过结果,以获得最大定位定位定位定位定位定位定位定位定位定位定位定位定位上,以获得最高路路路段的轨测算。