Increasingly, attorneys are interested in moving beyond keyword and semantic search to improve the efficiency of how they find key information during a document review task. Large language models (LLMs) are now seen as tools that attorneys can use to ask natural language questions of their data during document review to receive accurate and concise answers. This study evaluates retrieval strategies within Microsoft Azure's Retrieval-Augmented Generation (RAG) framework to identify effective approaches for Early Case Assessment (ECA) in eDiscovery. During ECA, legal teams analyze data at the outset of a matter to gain a general understanding of the data and attempt to determine key facts and risks before beginning full-scale review. In this paper, we compare the performance of Azure AI Search's keyword, semantic, vector, hybrid, and hybrid-semantic retrieval methods. We then present the accuracy, relevance, and consistency of each method's AI-generated responses. Legal practitioners can use the results of this study to enhance how they select RAG configurations in the future.


翻译:律师们日益关注超越关键词和语义搜索,以提高在文档审阅任务中查找关键信息的效率。大型语言模型(LLMs)现被视为律师在文档审阅期间可使用的工具,能够以自然语言提问其数据并获得准确、简洁的答案。本研究评估了微软 Azure 检索增强生成(RAG)框架内的检索策略,旨在识别电子取证中早期案件评估(ECA)的有效方法。在 ECA 过程中,法律团队在案件初期分析数据,以获取对数据的总体理解,并尝试在开始全面审阅前确定关键事实与风险。本文比较了 Azure AI 搜索的关键词、语义、向量、混合及混合语义检索方法的性能。随后,我们展示了每种方法 AI 生成响应的准确性、相关性和一致性。法律从业者可利用本研究结果,优化未来 RAG 配置的选择方式。

0
下载
关闭预览

相关内容

Windows Azure是微软基于云计算的操作系统,现在更名为“Microsoft Azure”,和Azure Services Platform一样,是微软“软件和服务”技术的名称。Windows Azure的主要目标是为开发者提供一个平台,帮助开发可运行在云服务器、数据中心、Web和PC上的应用程序。云计算的开发者能使用微软全球数据中心的储存、计算能力和网络基础服务。Azure服务平台包括了以下主要组件:Windows Azure;Microsoft SQL数据库服务,Microsoft .Net服务;用于分享、储存和同步文件的Live服务;针对商业的Microsoft SharePoint和Microsoft Dynamics CRM服务。
Deep Research(深度研究):系统性综述
专知会员服务
42+阅读 · 12月3日
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
Arxiv
0+阅读 · 12月15日
VIP会员
相关资讯
【CVPR 2020 Oral】小样本类增量学习
专知
20+阅读 · 2020年6月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员