Homotopy approaches to Bayesian inference have found widespread use especially if the Kullback-Leibler divergence between the prior and the posterior distribution is large. Here we extend one of these homotopy approach to include an underlying stochastic diffusion process. The underlying mathematical problem is closely related to the Schr\"odinger bridge problem for given marginal distributions. We demonstrate that the proposed homotopy approach provides a computationally tractable approximation to the underlying bridge problem. In particular, our implementation builds upon the widely used ensemble Kalman filter methodology and extends it to Schr\"odinger bridge problems within the context of sequential data assimilation.
翻译:Bayesian 推论的单调方法已发现广泛使用,特别是如果Kullback- Leiber在前一和后后二分布之间的差异很大的话。 我们在此扩展了这种同质方法之一, 以包括一个基本的随机扩散过程。 根本的数学问题与给定边缘分布的Schr\'odinger桥问题密切相关。 我们证明拟议的同质方法提供了可计算到的近似点, 与根本的桥问题相近。 特别是, 我们的实施建立在广泛使用的共通性Kalman过滤方法之上, 并将其扩大到相继数据同化背景下的Schr\'odinger桥问题 。