Identifying high-dimensional data patterns without a priori knowledge is an important task of data science. This paper proposes a simple and efficient noparametric algorithm: Data Convert to Sequence Analysis, DCSA, which dynamically explore each point in the feature space without repetition, and a Directed Hamilton Path will be found. Based on the change point analysis theory, The sequence corresponding to the path is cut into several fragments to achieve clustering. The experiments on real-world datasets from different fields with dimensions ranging from 4 to 20531 confirm that the method in this work is robust and has visual interpretability in result analysis.


翻译:在没有先验知识的情况下确定高维数据模式是数据科学的一项重要任务。本文件提出了一个简单而高效的参数算法:数据转换为序列分析,DCSA, 数据转换为序列分析, 数据转换为序列分析, 数据转换为序列分析, 数据转换为序列分析, 将动态探索地物空间中的每个点而不重复, 并将找到一条定向的汉密尔顿路径。 根据变化点分析理论, 路径的序列被切成几个碎片, 以便实现组合。 不同领域( 范围从 4 至 20531 不等) 的真实世界数据集实验证实, 这项工作的方法是稳健的, 在结果分析中具有直观解释性。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员