Density tracking by quadrature (DTQ) is a numerical procedure for computing solutions to Fokker-Planck equations that describe probability densities for stochastic differential equations (SDEs). In this paper, we extend upon existing tensorized DTQ procedures by utilizing a flexible quadrature rule that allows for unstructured, adaptive meshes. We propose and describe the procedure for $N$-dimensions, and demonstrate that the resulting adaptive procedure is significantly more efficient than a tensorized approach. Although we consider two-dimensional examples, all our computational procedures are extendable to higher dimensional problems.


翻译:以等离子体(DTQ)跟踪密度是一个计算Fokker-Planck方程式解决方案的数字程序,它描述了随机差分方程式(SDEs)的概率密度。 在本文中,我们通过使用允许无结构、适应性地 meshes 的灵活等离子体规则,扩展了现有的有弹性的DTQ 程序。我们提出并描述以美元计值的平方程式,并表明由此产生的适应程序比分解法效率要高得多。 尽管我们考虑了二维实例,但我们所有的计算程序都可以扩大到更高维度的问题。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员