We present a robust system for state estimation that fuses measurements from multiple lidars and inertial sensors with GNSS data. To initiate the method, we use the prior GNSS pose information. We then perform incremental motion in real-time, which produces robust motion estimates in a global frame by fusing lidar and IMU signals with GNSS translation components using a factor graph framework. We also propose methods to account for signal loss with a novel synchronization and fusion mechanism. To validate our approach extensive tests were carried out on data collected using Scania test vehicles (5 sequences for a total of ~ 7 Km). From our evaluations, we show an average improvement of 61% in relative translation and 42% rotational error compared to a state-of-the-art estimator fusing a single lidar/inertial sensor pair.
翻译:我们提出了一个可靠的国家估计系统,用全球导航卫星系统数据将多个里达尔和惯性传感器的测量结果与全球导航卫星系统数据连接起来。为了启动这一方法,我们使用了先前的全球导航卫星系统构成的信息。然后,我们实时地进行递增运动,利用一个要素图框架,用全球导航卫星系统翻译组件引信里达尔和IMU的信号,在全球范围内产生稳健的运动估计。我们还提出了用一个新的同步和聚合机制来计算信号丢失的方法。为了验证我们的方法,对使用Scania测试器收集的数据进行了广泛的测试(共~7公里,共5个序列)。根据我们的评估,我们显示,相对翻译的平均改进率为61%,旋转误差为42%,而使用单一里达尔/内脏传感器对齐的最先进的测算器则比使用单一里达尔/内脏传感器对齐的平均改进了61%和42%。