Permutation tests have been proposed by Albert et al. (2015) to detect dependence between point processes, modeling in particular spike trains, that is the time occurrences of action potentials emitted by neurons. Our present work focuses on exhibiting a criterion on the separation rate to ensure that the Type II errors of these tests are controlled non asymptotically. This criterion is then discussed in two major models in neuroscience: the jittering Poisson model and Hawkes processes having \(M\) components interacting in a mean field frame and evolving in stationary regime. For both models, we obtain a lower bound of the size \(n\) of the sample necessary to detect the dependency between two neurons.


翻译:Albert等人(2015)提出了置换检验方法,用于检测点过程之间的依赖性,该方法特别适用于模拟神经元动作电位发放时间序列(即锋电位序列)的建模。本研究重点在于提出一个关于分离率的判据,以确保这些检验的第二类误差在非渐近条件下得到控制。该判据随后在神经科学中的两个主要模型中进行讨论:抖动泊松模型和具有M个分量在均值场框架下交互作用且处于平稳状态的Hawkes过程。针对这两种模型,我们推导出检测两个神经元间依赖性所需样本量n的下界。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员