We develop a feedback control framework for stabilizing the McKean-Vlasov PDE on the torus. Our goal is to steer the dynamics toward a prescribed stationary distribution or accelerate convergence to it using a time-dependent control potential. We reformulate the controlled PDE in a weighted, zero-mean space and apply the ground-state transform to obtain a Schrodinger-type operator. The resulting operator framework enables spectral analysis, verification of the infinite-dimensional Hautus test, and construction of a Riccati-based feedback law derived from the linearized dynamics, yielding local exponential stabilization with a chosen convergence rate. We rigorously prove local exponential stabilization via maximal regularity arguments and nonlinear estimates. Numerical experiments on well-studied models in one and two dimensions (the noisy Kuramoto model for synchronization, the O(2) spin model in a magnetic field, and the von Mises attractive interaction potential) showcase the effectiveness of our control strategy, demonstrating convergence acceleration and stabilization of unstable equilibria.
翻译:本文针对环面上的McKean-Vlasov偏微分方程构建了一个反馈控制框架,旨在通过时变控制势函数将系统动力学引导至预设的稳态分布或加速其收敛过程。我们将受控偏微分方程重构于加权零均值空间,并应用基态变换得到薛定谔型算子。该算子框架支持谱分析、无限维Hautus检验验证,以及基于线性化动力学推导的Riccati反馈律构造,从而实现具有选定收敛速率的局部指数镇定。我们通过极大正则性论证和非线性估计严格证明了局部指数镇定特性。在一维和二维经典模型(同步噪声Kuramoto模型、磁场中的O(2)自旋模型、冯·米塞斯吸引相互作用势)上的数值实验展示了本控制策略的有效性,包括收敛加速和不稳定平衡点的镇定。