This work introduces LIMOncello, a tightly coupled LiDAR-Inertial Odometry system that models 6-DoF motion on the $\mathrm{SGal}(3)$ manifold within an iterated error-state Kalman filter backend. Compared to state representations defined on $\mathrm{SO}(3)\times\mathbb{R}^6$, the use of $\mathrm{SGal}(3)$ provides a coherent and numerically stable discrete-time propagation model that helps limit drift in low-observability conditions. LIMOncello also includes a lightweight incremental i-Octree mapping backend that enables faster updates and substantially lower memory usage than incremental kd-tree style map structures, without relying on locality-restricted search heuristics. Experiments on multiple real-world datasets show that LIMOncello achieves competitive accuracy while improving robustness in geometrically sparse environments. The system maintains real-time performance with stable memory growth and is released as an extensible open-source implementation at https://github.com/CPerezRuiz335/LIMOncello.
翻译:本文提出了LIMOncello,一种紧耦合的激光雷达-惯性里程计系统,它在迭代误差状态卡尔曼滤波器后端中,于$\mathrm{SGal}(3)$流形上对六自由度运动进行建模。与在$\mathrm{SGal}(3)\times\mathbb{R}^6$上定义的状态表示相比,使用$\mathrm{SGal}(3)$提供了一个连贯且数值稳定的离散时间传播模型,有助于限制在低可观测性条件下的漂移。LIMOncello还包含一个轻量级的增量i-Octree建图后端,该后端能够实现比增量kd树式地图结构更快的更新速度和显著更低的内存占用,且不依赖于局部受限的搜索启发式方法。在多个真实世界数据集上的实验表明,LIMOncello在保持实时性能与稳定内存增长的同时,实现了具有竞争力的精度,并在几何稀疏环境中提高了鲁棒性。该系统已作为可扩展的开源实现发布于https://github.com/CPerezRuiz335/LIMOncello。