Exterior powers play important roles in persistent homology in computational geometry. In the present paper we study the problem of extracting the $K$ longest intervals of the exterior-power layers of a tame persistence module. We prove a structural decomposition theorem that organizes the exterior-power layers into monotone per-anchor streams with explicit multiplicities, enabling a best-first algorithm. We also show that the Top-$K$ length vector is $2$-Lipschitz under bottleneck perturbations of the input barcode, and prove a comparison-model lower bound. Our experiments confirm the theory, showing speedups over full enumeration in high overlap cases. By enabling efficient extraction of the most prominent features, our approach makes higher-order persistence feasible for large datasets and thus broadly applicable to machine learning, data science, and scientific computing.


翻译:外积在计算几何的持久同调中扮演着重要角色。本文研究从驯顺持久模的外积层中提取最长 $K$ 个区间的问题。我们证明了一个结构分解定理,该定理将外积层组织成具有显式重数的单调逐锚流,从而支持一种最佳优先算法。我们还证明了在输入条形码的瓶颈扰动下,Top-$K$ 长度向量是 $2$-Lipschitz 的,并给出了比较模型下的下界。实验验证了理论结果,在高重叠情况下相比完全枚举实现了加速。通过高效提取最显著的特征,我们的方法使得高阶持久同调能够应用于大型数据集,从而可广泛用于机器学习、数据科学与科学计算。

0
下载
关闭预览

相关内容

【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2022】黎曼扩散模型
专知会员服务
42+阅读 · 2022年9月15日
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员