知识图谱(Knowledge Graph),在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。 知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它能为学科研究提供切实的、有价值的参考。

Public knowledge graphs such as DBpedia and Wikidata have been recognized as interesting sources of background knowledge to build content-based recommender systems. They can be used to add information about the items to be recommended and links between those. While quite a few approaches for exploiting knowledge graphs have been proposed, most of them aim at optimizing the recommendation strategy while using a fixed knowledge graph. In this paper, we take a different approach, i.e., we fix the recommendation strategy and observe changes when using different underlying knowledge graphs. Particularly, we use different language editions of DBpedia. We show that the usage of different knowledge graphs does not only lead to differently biased recommender systems, but also to recommender systems that differ in performance for particular fields of recommendations.

0
0
下载
预览

In recent years, we observe an increasing amount of software with machine learning components being deployed. This poses the question of quality assurance for such components: how can we validate whether specified requirements are fulfilled by a machine learned software? Current testing and verification approaches either focus on a single requirement (e.g., fairness) or specialize on a single type of machine learning model (e.g., neural networks). In this paper, we propose property-driven testing of machine learning models. Our approach MLCheck encompasses (1) a language for property specification, and (2) a technique for systematic test case generation. The specification language is comparable to property-based testing languages. Test case generation employs advanced verification technology for a systematic, property-dependent construction of test suites, without additional user-supplied generator functions. We evaluate MLCheck using requirements and data sets from three different application areas (software discrimination, learning on knowledge graphs and security). Our evaluation shows that despite its generality MLCheck can even outperform specialised testing approaches while having a comparable runtime.

0
0
下载
预览

In the context of social media, geolocation inference on news or events has become a very important task. In this paper, we present the GeoWINE (Geolocation-based Wiki-Image-News-Event retrieval) demonstrator, an effective modular system for multimodal retrieval which expects only a single image as input. The GeoWINE system consists of five modules in order to retrieve related information from various sources. The first module is a state-of-the-art model for geolocation estimation of images. The second module performs a geospatial-based query for entity retrieval using the Wikidata knowledge graph. The third module exploits four different image embedding representations, which are used to retrieve most similar entities compared to the input image. The embeddings are derived from the tasks of geolocation estimation, place recognition, ImageNet-based image classification, and their combination. The last two modules perform news and event retrieval from EventRegistry and the Open Event Knowledge Graph (OEKG). GeoWINE provides an intuitive interface for end-users and is insightful for experts for reconfiguration to individual setups. The GeoWINE achieves promising results in entity label prediction for images on Google Landmarks dataset. The demonstrator is publicly available at http://cleopatra.ijs.si/geowine/.

0
0
下载
预览

Conversational Recommender Systems (CRSs) in E-commerce platforms aim to recommend items to users via multiple conversational interactions. Click-through rate (CTR) prediction models are commonly used for ranking candidate items. However, most CRSs are suffer from the problem of data scarcity and sparseness. To address this issue, we propose a novel knowledge-enhanced deep cross network (K-DCN), a two-step (pretrain and fine-tune) CTR prediction model to recommend items. We first construct a billion-scale conversation knowledge graph (CKG) from information about users, items and conversations, and then pretrain CKG by introducing knowledge graph embedding method and graph convolution network to encode semantic and structural information respectively.To make the CTR prediction model sensible of current state of users and the relationship between dialogues and items, we introduce user-state and dialogue-interaction representations based on pre-trained CKG and propose K-DCN.In K-DCN, we fuse the user-state representation, dialogue-interaction representation and other normal feature representations via deep cross network, which will give the rank of candidate items to be recommended.We experimentally prove that our proposal significantly outperforms baselines and show it's real application in Alime.

0
0
下载
预览

Knowledge representation learning has received a lot of attention in the past few years. The success of existing methods heavily relies on the quality of knowledge graphs. The entities with few triplets tend to be learned with less expressive power. Fortunately, there are many knowledge graphs constructed from various sources, the representations of which could contain much information. We propose an adversarial embedding transfer network ATransN, which transfers knowledge from one or more teacher knowledge graphs to a target one through an aligned entity set without explicit data leakage. Specifically, we add soft constraints on aligned entity pairs and neighbours to the existing knowledge representation learning methods. To handle the problem of possible distribution differences between teacher and target knowledge graphs, we introduce an adversarial adaption module. The discriminator of this module evaluates the degree of consistency between the embeddings of an aligned entity pair. The consistency score is then used as the weights of soft constraints. It is not necessary to acquire the relations and triplets in teacher knowledge graphs because we only utilize the entity representations. Knowledge graph completion results show that ATransN achieves better performance against baselines without transfer on three datasets, CN3l, WK3l, and DWY100k. The ablation study demonstrates that ATransN can bring steady and consistent improvement in different settings. The extension of combining other knowledge graph embedding algorithms and the extension with three teacher graphs display the promising generalization of the adversarial transfer network.

0
0
下载
预览
Top