状态估计根据可获取的量测数据估算动态系统内部状态的方法。对系统的输入和输出进行量测而得到的数据只能反映系统的外部特性,而系统的动态规律需要用内部(通常无法直接测量)状态变量来描述。因此状态估计对于了解和控制一个系统具有重要意义。

最新内容

Recent advances in computational perception have significantly improved the ability of autonomous robots to perform state estimation with low entropy. Such advances motivate a reconsideration of robot decision-making under uncertainty. Current approaches to solving sequential decision-making problems model states as inhabiting the extremes of the perceptual entropy spectrum. As such, these methods are either incapable of overcoming perceptual errors or asymptotically inefficient in solving problems with low perceptual entropy. With low entropy perception in mind, we aim to explore a happier medium that balances computational efficiency with the forms of uncertainty we now observe from modern robot perception. We propose FastDownward Replanner (FD-Replan) as an efficient task planning method for goal-directed robot reasoning. FD-Replan combines belief space representation with the fast, goal-directed features of classical planning to efficiently plan for low entropy goal-directed reasoning tasks. We compare FD-Replan with current classical planning and belief space planning approaches by solving low entropy goal-directed grocery packing tasks in simulation. FD-Replan shows positive results and promise with respect to planning time, execution time, and task success rate in our simulation experiments.

0
0
下载
预览

最新论文

Recent advances in computational perception have significantly improved the ability of autonomous robots to perform state estimation with low entropy. Such advances motivate a reconsideration of robot decision-making under uncertainty. Current approaches to solving sequential decision-making problems model states as inhabiting the extremes of the perceptual entropy spectrum. As such, these methods are either incapable of overcoming perceptual errors or asymptotically inefficient in solving problems with low perceptual entropy. With low entropy perception in mind, we aim to explore a happier medium that balances computational efficiency with the forms of uncertainty we now observe from modern robot perception. We propose FastDownward Replanner (FD-Replan) as an efficient task planning method for goal-directed robot reasoning. FD-Replan combines belief space representation with the fast, goal-directed features of classical planning to efficiently plan for low entropy goal-directed reasoning tasks. We compare FD-Replan with current classical planning and belief space planning approaches by solving low entropy goal-directed grocery packing tasks in simulation. FD-Replan shows positive results and promise with respect to planning time, execution time, and task success rate in our simulation experiments.

0
0
下载
预览
Top