狭义的情感分析(sentiment analysis)是指利用计算机实现对文本数据的观点、情感、态度、情绪等的分析挖掘。广义的情感分析则包括对图像视频、语音、文本等多模态信息的情感计算。简单地讲,情感分析研究的目标是建立一个有效的分析方法、模型和系统,对输入信息中某个对象分析其持有的情感信息,例如观点倾向、态度、主观观点或喜怒哀乐等情绪表达。

This paper addresses the problem of sentiment analysis for Jopara, a code-switching language between Guarani and Spanish. We first collect a corpus of Guarani-dominant tweets and discuss on the difficulties of finding quality data for even relatively easy-to-annotate tasks, such as sentiment analysis. Then, we train a set of neural models, including pre-trained language models, and explore whether they perform better than traditional machine learning ones in this low-resource setup. Transformer architectures obtain the best results, despite not considering Guarani during pre-training, but traditional machine learning models perform close due to the low-resource nature of the problem.

0
0
下载
预览

Software development is a collaborative task and, hence, involves different persons. Research has shown the relevance of social aspects in the development team for a successful and satisfying project closure. Especially the mood of a team has been proven to be of particular importance. Thus, project managers or project leaders want to be aware of situations in which negative mood is present to allow for interventions. So-called sentiment analysis tools offer a way to determine the mood based on text-based communication. In this paper, we present the results of a systematic literature review of sentiment analysis tools developed for or applied in the context of software engineering. Our results summarize insights from 80 papers with respect to (1) the application domain, (2) the purpose, (3) the used data sets, (4) the approaches for developing sentiment analysis tools and (5) the difficulties researchers face when applying sentiment analysis in the context of software projects. According to our results, sentiment analysis is frequently applied to open-source software projects, and most tools are based on support-vector machines. Despite the frequent use of sentiment analysis in software engineering, there are open issues, e.g., regarding the identification of irony or sarcasm, pointing to future research directions.

0
0
下载
预览

Customers of machine learning systems demand accountability from the companies employing these algorithms for various prediction tasks. Accountability requires understanding of system limit and condition of erroneous predictions, as customers are often interested in understanding the incorrect predictions, and model developers are absorbed in finding methods that can be used to get incremental improvements to an existing system. Therefore, we propose an accountable error characterization method, AEC, to understand when and where errors occur within the existing black-box models. AEC, as constructed with human-understandable linguistic features, allows the model developers to automatically identify the main sources of errors for a given classification system. It can also be used to sample for the set of most informative input points for a next round of training. We perform error detection for a sentiment analysis task using AEC as a case study. Our results on the sample sentiment task show that AEC is able to characterize erroneous predictions into human understandable categories and also achieves promising results on selecting erroneous samples when compared with the uncertainty-based sampling.

0
0
下载
预览

This paper addresses the problem of sentiment analysis for Jopara, a code-switching language between Guarani and Spanish. We first collect a corpus of Guarani-dominant tweets and discuss on the difficulties of finding quality data for even relatively easy-to-annotate tasks, such as sentiment analysis. Then, we train a set of neural models, including pre-trained language models, and explore whether they perform better than traditional machine learning ones in this low-resource setup. Transformer architectures obtain the best results, despite not considering Guarani during pre-training, but traditional machine learning models perform close due to the low-resource nature of the problem.

0
0
下载
预览

Recent neural-based aspect-based sentiment analysis approaches, though achieving promising improvement on benchmark datasets, have reported suffering from poor robustness when encountering confounder such as non-target aspects. In this paper, we take a causal view to addressing this issue. We propose a simple yet effective method, namely, Sentiment Adjustment (SENTA), by applying a backdoor adjustment to disentangle those confounding factors. Experimental results on the Aspect Robustness Test Set (ARTS) dataset demonstrate that our approach improves the performance while maintaining accuracy in the original test set.

0
0
下载
预览

Recently, a new recurrent neural network (RNN) named the Legendre Memory Unit (LMU) was proposed and shown to achieve state-of-the-art performance on several benchmark datasets. Here we leverage the linear time-invariant (LTI) memory component of the LMU to construct a simplified variant that can be parallelized during training (and yet executed as an RNN during inference), thus overcoming a well known limitation of training RNNs on GPUs. We show that this reformulation that aids parallelizing, which can be applied generally to any deep network whose recurrent components are linear, makes training up to 200 times faster. Second, to validate its utility, we compare its performance against the original LMU and a variety of published LSTM and transformer networks on seven benchmarks, ranging from psMNIST to sentiment analysis to machine translation. We demonstrate that our models exhibit superior performance on all datasets, often using fewer parameters. For instance, our LMU sets a new state-of-the-art result on psMNIST, and uses half the parameters while outperforming DistilBERT and LSTM models on IMDB sentiment analysis.

0
0
下载
预览

In recent years, sentiment analysis and emotion classification are two of the most abundantly used techniques in the field of Natural Language Processing (NLP). Although sentiment analysis and emotion classification are used commonly in applications such as analyzing customer reviews, the popularity of candidates contesting in elections, and comments about various sporting events; however, in this study, we have examined their application for epidemic outbreak detection. Early outbreak detection is the key to deal with epidemics effectively, however, the traditional ways of outbreak detection are time-consuming which inhibits prompt response from the respective departments. Social media platforms such as Twitter, Facebook, Instagram, etc. allow the users to express their thoughts related to different aspects of life, and therefore, serve as a substantial source of information in such situations. The proposed study exploits the bilingual (Urdu and English) data from Twitter and NEWS websites related to the dengue epidemic in Pakistan, and sentiment analysis and emotion classification are performed to acquire deep insights from the data set for gaining a fair idea related to an epidemic outbreak. Machine learning and deep learning algorithms have been used to train and implement the models for the execution of both tasks. The comparative performance of each model has been evaluated using accuracy, precision, recall, and f1-measure.

0
0
下载
预览

Being able to predict stock prices might be the unspoken wish of stock investors. Although stock prices are complicated to predict, there are many theories about what affects their movements, including interest rates, news and social media. With the help of Machine Learning, complex patterns in data can be identified beyond the human intellect. In this thesis, a Machine Learning model for time series forecasting is created and tested to predict stock prices. The model is based on a neural network with several layers of LSTM and fully connected layers. It is trained with historical stock values, technical indicators and Twitter attribute information retrieved, extracted and calculated from posts on the social media platform Twitter. These attributes are sentiment score, favourites, followers, retweets and if an account is verified. To collect data from Twitter, Twitter's API is used. Sentiment analysis is conducted with VADER. The results show that by adding more Twitter attributes, the MSE between the predicted prices and the actual prices improved by 3%. With technical analysis taken into account, MSE decreases from 0.1617 to 0.1437, which is an improvement of around 11%. The restrictions of this study include that the selected stock has to be publicly listed on the stock market and popular on Twitter and among individual investors. Besides, the stock markets' opening hours differ from Twitter, which constantly available. It may therefore introduce noises in the model.

0
0
下载
预览
Top