VIP内容

机器学习使用各种数学领域的工具。本文试图对机器学习入门课程所需的数学背景进行总结,这门课在加州大学伯克利分校被称为CS 189/289A。我们假设读者已经熟悉多变量微积分和线性代数的基本概念(UCB数学53/54的水平)。这里介绍的大多数主题都很少涉及; 我们打算给出一个概述,并向感兴趣的读者指出更全面的处理以获得进一步的细节。请注意,本文关注的是机器学习的数学背景,而不是机器学习本身。我们将不讨论具体的机器学习模型或算法,除非可能通过强调数学概念的相关性。该文件的早期版本不包括校样。我们已开始在有助于理解的相当短的证明里加上证明。这些证明不是cs189的必要背景,但可以用来加深读者的理解。

成为VIP会员查看完整内容
0
95
Top