机器学习使用来自各种数学领域的工具。本文件试图提供一个概括性的数学背景,需要在入门类的机器学习,这是在加州大学伯克利分校被称为CS 189/289A。

https://people.eecs.berkeley.edu/~jrs/189/

我们的假设是读者已经熟悉多变量微积分和线性代数的基本概念(达到UCB数学53/54的水平)。我们强调,本文档不是对必备类的替代。这里介绍的大多数主题涉及的很少;我们打算给出一个概述,并指出感兴趣的读者更全面的理解进一步的细节。

请注意,本文档关注的是机器学习的数学背景,而不是机器学习本身。我们将不讨论特定的机器学习模型或算法,除非可能顺便强调一个数学概念的相关性。

这份文件的早期版本不包括校样。我们已经开始在一些证据中加入一些比较简短并且有助于理解的证据。这些证明不是cs189的必要背景,但可以用来加深读者的理解。

成为VIP会员查看完整内容
0
169

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

本备忘单是机器学习手册的浓缩版,包含了许多关于机器学习的经典方程和图表,旨在帮助您快速回忆起机器学习中的知识和思想。

这个备忘单有两个显著的优点:

  1. 清晰的符号。数学公式使用了许多令人困惑的符号。例如,X可以是一个集合,一个随机变量,或者一个矩阵。这是非常混乱的,使读者很难理解数学公式的意义。本备忘单试图规范符号的使用,所有符号都有明确的预先定义,请参见小节。

  2. 更少的思维跳跃。在许多机器学习的书籍中,作者省略了数学证明过程中的一些中间步骤,这可能会节省一些空间,但是会给读者理解这个公式带来困难,读者会在中间迷失。

成为VIP会员查看完整内容
0
209

【导读】UC.Berkeley CS189 《Introduction to Machine Learning》是面向初学者的机器学习课程在本指南中,我们创建了一个全面的课程指南,以便与学生和公众分享我们的知识,并希望吸引其他大学的学生对伯克利的机器学习课程感兴趣。

讲义目录:

  • Note 1: Introduction

  • Note 2: Linear Regression

  • Note 3: Features, Hyperparameters, Validation

  • Note 4: MLE and MAP for Regression (Part I)

  • Note 5: Bias-Variance Tradeoff

  • Note 6: Multivariate Gaussians

  • Note 7: MLE and MAP for Regression (Part II)

  • Note 8: Kernels, Kernel Ridge Regression

  • Note 9: Total Least Squares

  • Note 10: Principal Component Analysis (PCA)

  • Note 11: Canonical Correlation Analysis (CCA)

  • Note 12: Nonlinear Least Squares, Optimization

  • Note 13: Gradient Descent Extensions

  • Note 14: Neural Networks

  • Note 15: Training Neural Networks

  • Note 16: Discriminative vs. Generative Classification, LS-SVM

  • Note 17: Logistic Regression

  • Note 18: Gaussian Discriminant Analysis

  • Note 19: Expectation-Maximization (EM) Algorithm, k-means Clustering

  • Note 20: Support Vector Machines (SVM)

  • Note 21: Generalization and Stability

  • Note 22: Duality

  • Note 23: Nearest Neighbor Classification

  • Note 24: Sparsity

  • Note 25: Decision Trees and Random Forests

  • Note 26: Boosting

  • Note 27: Convolutional Neural Networks (CNN)

讨论目录:

  • Discussion 0: Vector Calculus, Linear Algebra (solution)

  • Discussion 1: Optimization, Least Squares, and Convexity (solution)

  • Discussion 2: Ridge Regression and Multivariate Gaussians (solution)

  • Discussion 3: Multivariate Gaussians and Kernels (solution)

  • Discussion 4: Principal Component Analysis (solution)

  • Discussion 5: Least Squares and Kernels (solution)

  • Discussion 6: Optimization and Reviewing Linear Methods (solution)

  • Discussion 7: Backpropagation and Computation Graphs (solution)

  • Discussion 8: QDA and Logistic Regression (solution)

  • Discussion 9: EM (solution)

  • Discussion 10: SVMs and KNN (solution)

  • Discussion 11: Decision Trees (solution)

  • Discussion 12: LASSO, Sparsity, Feature Selection, Auto-ML (solution)

讲义下载链接:https://pan.baidu.com/s/19Zmws53BUzjSvaDMEiUhqQ 密码:u2xs

成为VIP会员查看完整内容
0
115

简介: 迁移学习作为机器学习的一大分支,已经取得了长足的进步。本手册简明地介绍迁移学习的概念与基本方法,并对其中的领域自适应问题中的若干代表性方法进行讲述。最后简要探讨迁移学习未来可能的方向。 本手册编写的目的是帮助迁移学习领域的初学者快速入门并掌握基本方法,为自己的研究和应用工作打下良好基础。 本手册的编写逻辑很简单:是什么——介绍迁移学习;为什么——为什么要用迁移学习、为什么能用;怎么办——如何进行迁移 (迁移学习方法)。其中,是什么和为什么解决概念问题,这是一切的前提;怎么办是我们的重点,也占据了最多的篇幅。为了最大限度地方便初学者,我们还特别编写了一章上手实践,直接分享实现代码和心得体会。

作者简介: 王晋东,现于中国科学院计算技术研究所攻读博士学位,研究方向为迁移学习、机器学习等。他在国际权威会议ICDM、UbiComp等发表多篇文章。同时,也是知乎等知识共享社区的机器学习达人(知乎用户名:王晋东不在家)。他还在Github上发起建立了多个与机器学习相关的资源仓库,成立了超过120个高校和研究所参与的机器学习群,热心于知识的共享。个人主页:http://jd92.wang

目录:

  • 迁移学习基本概念
  • 迁移学习的研究领域
  • 迁移学习的应用
  • 基础知识
  • 迁移学习的基本方法
  • 第一类方法:数据分布自适应
  • 第二类方法:特征选择
  • 第三类方法:子空间学习
  • 深度迁移学习
  • 上手实践
  • 迁移学习前沿
成为VIP会员查看完整内容
0
83

由Marc Peter Deisenroth,A Aldo Faisal和Cheng Soon Ong撰写的《机器学习数学基础》“Mathematics for Machine Learning” 最新版417页pdf版本已经放出,作者表示撰写这本书旨在激励人们学习数学概念。这本书并不打算涵盖前沿的机器学习技术,因为已经有很多书这样做了。相反,作者的目标是通过该书提供阅读其他书籍所需的数学基础。这本书分为两部分:数学基础知识和使用数学基础知识进行机器学习算法示例。值得初学者收藏和学习!

目录

Part I: 数据基础

  • Introduction and Motivation
  • Linear Algebra
  • Analytic Geometry
  • Matrix Decompositions
  • Vector Calculus
  • Probability and Distribution
  • Continuous Optimization

Part II: 机器学习问题

  • When Models Meet Data
  • Linear Regression
  • Dimensionality Reduction with Principal Component Analysis
  • Density Estimation with Gaussian Mixture Models
  • Classification with Support Vector Machines
成为VIP会员查看完整内容
0
147
小贴士
相关VIP内容
专知会员服务
118+阅读 · 2020年6月27日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
235+阅读 · 2020年3月17日
机器学习速查手册,135页pdf
专知会员服务
209+阅读 · 2020年3月15日
【2020新书】简明机器学习导论,电子书与500页PPT
专知会员服务
185+阅读 · 2020年2月7日
专知会员服务
115+阅读 · 2020年1月16日
《迁移学习简明手册》,93页pdf
专知会员服务
83+阅读 · 2019年12月9日
相关资讯
【资源】机器学习数学全书,1900页PDF下载
全球人工智能
86+阅读 · 2019年10月17日
421页《机器学习数学基础》最新2019版PDF下载
381页机器学习数学基础PDF下载
专知
72+阅读 · 2018年10月9日
机器学习实践指南
Linux中国
4+阅读 · 2017年9月28日
相关论文
Object-centric Forward Modeling for Model Predictive Control
Yufei Ye,Dhiraj Gandhi,Abhinav Gupta,Shubham Tulsiani
4+阅读 · 2019年10月8日
Kwonjoon Lee,Subhransu Maji,Avinash Ravichandran,Stefano Soatto
4+阅读 · 2019年4月23日
Psi-Net: Shape and boundary aware joint multi-task deep network for medical image segmentation
Balamurali Murugesan,Kaushik Sarveswaran,Sharath M Shankaranarayana,Keerthi Ram,Mohanasankar Sivaprakasam
6+阅读 · 2019年2月11日
Aleatoric uncertainty estimation with test-time augmentation for medical image segmentation with convolutional neural networks
Guotai Wang,Wenqi Li,Michael Aertsen,Jan Deprest,Sebastien Ourselin,Tom Vercauteren
7+阅读 · 2018年7月20日
Test-time augmentation with uncertainty estimation for deep learning-based medical image segmentation
Guotai Wang,Wenqi Li,Michael Aertsen,Jan Deprest,Sebastien Ourselin,Tom Vercauteren
3+阅读 · 2018年7月19日
Yong Wang,Xiao-Ming Wu,Qimai Li,Jiatao Gu,Wangmeng Xiang,Lei Zhang,Victor O. K. Li
9+阅读 · 2018年7月8日
Liwei Cai,William Yang Wang
6+阅读 · 2018年4月16日
Yuxin Wu,Kaiming He
7+阅读 · 2018年3月22日
Top