协同过滤(英语:Collaborative Filtering),简单来说是利用某兴趣相投、拥有共同经验之群体的喜好来推荐用户感兴趣的信息,个人透过合作的机制给予信息相当程度的回应(如评分)并记录下来以达到过滤的目的进而帮助别人筛选信息,回应不一定局限于特别感兴趣的,特别不感兴趣信息的纪录也相当重要。协同过滤又可分为评比(rating)或者群体过滤(social filtering)。其后成为电子商务当中很重要的一环,即根据某顾客以往的购买行为以及从具有相似购买行为的顾客群的购买行为去推荐这个顾客其“可能喜欢的品项”,也就是借由社群的喜好提供个人化的信息、商品等的推荐服务。除了推荐之外,近年来也发展出数学运算让系统自动计算喜好的强弱进而去芜存菁使得过滤的内容更有依据,也许不是百分之百完全准确,但由于加入了强弱的评比让这个概念的应用更为广泛,除了电子商务之外尚有信息检索领域、网络个人影音柜、个人书架等的应用等。

VIP内容

越来越多的人际互动在社交媒体平台上数字化,并受到算法决策的影响,而确保这些算法的公平对待变得越来越重要。在这项工作中,我们研究了在社交媒体数据上训练的协作过滤推荐系统中的性别偏见。我们研发了神经公平协同过滤(NFCF),这是一个在推荐与职业相关的敏感项目(如工作、学术集中程度或课程)时减少性别偏见的实用框架,使用了神经协同过滤的预训练和微调方法,并辅以偏见纠正技术。我们分别在MovieLens数据集和Facebook数据集上展示了我们的方法在性别去偏见职业和大学专业推荐方面的效用,并取得了比一些最先进的模型更好的表现和更公平的行为。

http://jfoulds.informationsystems.umbc.edu/papers/2021/Islam%20(2021)%20-%20Debiasing%20Career%20Recommendations%20with%20Neural%20Fair%20Collaborative%20Filtering%20(WWW).pdf

成为VIP会员查看完整内容
0
12

最新论文

We consider sparse matrix estimation where the goal is to estimate an $n\times n$ matrix from noisy observations of a small subset of its entries. We analyze the estimation error of the popularly utilized collaborative filtering algorithm for the sparse regime. Specifically, we propose a novel iterative variant of the algorithm, adapted to handle the setting of sparse observations. We establish that as long as the fraction of entries observed at random scale as $\frac{\log^{1+\kappa}(n)}{n}$ for any fixed $\kappa > 0$, the estimation error with respect to the $\max$-norm decays to $0$ as $n\to\infty$ assuming the underlying matrix of interest has constant rank $r$. Our result is robust to model mis-specification in that if the underlying matrix is approximately rank $r$, then the estimation error decays to the approximate error with respect to the $\max$-norm. In the process, we establish algorithm's ability to handle arbitrary bounded noise in the observations.

0
0
下载
预览
父主题
Top