题目: Deep Learning for Symbolic Mathematics

摘要:

传统的机器学习反对统计学习的基于规则的推理,而神经网络显然站在统计一边。它们已被证明在统计模式识别方面非常有效,现在在计算机视觉、语音识别、自然语言处理(NLP)等一系列问题上取得了最先进的性能。然而,神经网络在符号计算方面的成功仍然非常有限:将符号推理与连续表示相结合是目前机器学习的挑战之一。神经网络在解决统计或近似问题方面比在计算处理符号数据方面有更好的声誉。在这篇论文中,我们证明了它们在数学中更复杂的任务,如符号积分和解微分方程,可以表现出惊人的能力。我们提出了一种表示数学问题的语法和生成大型数据集的方法,这些数据集可用于训练序列到序列模型。我们取得的结果超过商业计算机代数系统,如Matlab或Mathematica。

作者简介:

François Charton是Facebook人工智能研究访问企业家,研究领域是机器学习和因果关系,数学、计算机科学和媒体。

成为VIP会员查看完整内容
0
11

相关内容

模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读,把环境与客体统称为“模式”。随着计算机技术的发展,人类有可能研究复杂的信息处理过程,其过程的一个重要形式是生命体对环境及客体的识别。模式识别以图像处理与计算机视觉、语音语言信息处理、脑网络组、类脑智能等为主要研究方向,研究人类模式识别的机理以及有效的计算方法

题目: DEEP LEARNING FOR SYMBOLIC MATHEMATICS

摘要: 神经网络在解决统计或近似问题上比执行计算或处理符号数据更好。 在本文中,我们证明了它们在数学上更精细的任务上表现出令人惊讶的出色表现,例如符号积分和解决微分方程式。我们提出了一种表示数学问题的语法,以及生成可用于训练序列到序列的大型数据集的方法。我们取得的结果优于Matlab或Mathematica等商业计算机代数系统。

成为VIP会员查看完整内容
0
15

题目: Natural Language Processing Advancements By Deep Learning: A Survey

摘要: 自然语言处理(NLP)帮助智能机器更好地理解人类语言,实现基于语言的人机交流。算力的最新发展和语言大数据的出现,增加了使用数据驱动方法自动进行语义分析的需求。由于深度学习方法在计算机视觉、自动语音识别,特别是NLP等领域的应用取得了显著的进步,数据驱动策略的应用已经非常普遍。本综述对得益于深度学习的NLP的不同方面和应用进行了分类和讨论。它涵盖了核心的NLP任务和应用,并描述了深度学习方法和模型如何推进这些领域。我们并进一步分析和比较不同的方法和最先进的模型。

成为VIP会员查看完整内容
0
53

书名: Deep Learning for Search

简介:

深度学习搜索是一本实用的书,关于如何使用(深度)神经网络来帮助建立有效的搜索引擎。这本书研究了一个搜索引擎的几个组成部分,提供了关于它们如何工作的见解以及如何在每个环境中使用神经网络的指导。重点介绍了基于实例的实用搜索和深度学习技术,其中大部分都有代码。同时,在适当的地方提供相关研究论文的参考资料,以鼓励阅读更多的书籍,加深对特定主题的知识。

读完这本书,将对搜索引擎的主要挑战有所理解,它们是如何被普遍解决的以及深度学习可以做些什么来帮助。并且将对几种不同的深度学习技术以及它们在搜索环境中的适用范围有一个理解,将很好地了解Lucene和Deeplearning4j库。

这本书主要分为3个部分:

  • 第1部分介绍了搜索、机器学习和深度学习的基本概念。第一章介绍了应用深度学习技术来搜索问题的原理,涉及了信息检索中最常见的方法。第2章给出了如何使用神经网络模型从数据中生成同义词来提高搜索引擎效率的第一个例子。

  • 第2部分讨论了可以通过深度神经网络更好地解决的常见搜索引擎任务。第3章介绍了使用递归神经网络来生成用户输入的查询。第四章在深度神经网络的帮助下,在用户输入查询时提供更好的建议。第5章重点介绍了排序模型:尤其是如何使用词嵌入提供更相关的搜索结果。第6章讨论了文档嵌入在排序函数和内容重新编码上下文中的使用。

  • 第3部分将介绍更复杂的场景,如深度学习机器翻译和图像搜索。第7章通过基于神经网络的方法为你的搜索引擎提供多语言能力来指导你。第8章讨论了基于内容的图像集合的搜索,并使用了深度学习模型。第9章讨论了与生产相关的主题,如微调深度学习模型和处理不断输入的数据流。

作者简介:

Tommaso Teofili是一名软件工程师,他对开源机器学习充满热情。作为Apache软件基金会的成员,他为许多开放源码项目做出了贡献,从信息检索到自然语言处理和机器翻译等主题。他目前在Adobe工作,开发搜索和索引基础结构组件,并研究自然语言处理、信息检索和深度学习等领域。他曾在各种会议上发表过搜索和机器学习方面的演讲,包括BerlinBuzzwords、计算科学国际会议、ApacheCon、EclipseCon等。

成为VIP会员查看完整内容
0
140

简介: 人们在阅读文章时,可以识别关键思想,作出总结,并建立文章中的联系以及对其他需要理解的内容等方面都做得很出色。深度学习的最新进展使计算机系统可以实现类似的功能。用于自然语言处理的深度学习可教您将深度学习方法应用于自然语言处理(NLP),以有效地解释和使用文章。在这本书中,NLP专家Stephan Raaijmakers提炼了他对这个快速发展的领域中最新技术发展的研究。通过详细的说明和丰富的代码示例,您将探索最具挑战性的NLP问题,并学习如何通过深度学习解决它们!

自然语言处理是教计算机解释和处理人类语言的科学。最近,随着深度学习的应用,NLP技术已跃升至令人兴奋的新水平。这些突破包括模式识别,从上下文中进行推断以及确定情感语调,从根本上改善了现代日常便利性,例如网络搜索,以及与语音助手的交互。他们也在改变商业世界!

目录:

  • NLP和深度学习概述
  • 文本表示
  • 词嵌入
  • 文本相似性模型
  • 序列NLP
  • 语义角色标签
  • 基于深度记忆的NLP
  • 语言结构
  • 深度NLP的超参数

1深度NLP学习

  • 1.1概述
  • 1.2面向NLP的机器学习方法
  • 1.2.1感知机
  • 1.2.2 支持向量机
  • 1.2.3基于记忆的学习
  • 1.3深度学习
  • 1.4语言的向量表示
  • 1.4.1表示向量
  • 1.4.2运算向量
  • 1.5工具
  • 1.5.1哈希技巧
  • 1.5.2向量归一化
  • 1.6总结

2 深度学习和语言:基础知识

  • 2.1深度学习的基本构架
  • 2.1.1多层感知机
  • 2.1.2基本运算符:空间和时间
  • 2.2深度学习和NLP
  • 2.3总结

3文字嵌入

  • 3.1嵌入
  • 3.1.1手工嵌入
  • 3.1.2学习嵌入
  • 3.2word2vec
  • 3.3doc2vec
  • 3.4总结

4文字相似度

  • 4.1问题
  • 4.2数据
  • 4.2.1作者归属和验证数据
  • 4.3数据表示
  • 4.3.1分割文件
  • 4.3.2字的信息
  • 4.3.3子字集信息
  • 4.4相似度测量模型
  • 4.5.1多层感知机
  • 4.5.2CNN
  • 4.6总结

5序列NLP和记忆

  • 5.1记忆和语言
  • 5.1.1问答
  • 5.2数据和数据处理
  • 5.3序列模型的问答
  • 5.3.1用于问答的RNN
  • 5.3.2用于问答的LSTM
  • 5.3.3问答的端到端存储网络
  • 5.4总结

6NLP的6种情景记忆

  • 6.1序列NLP的记忆网络
  • 6.2数据与数据处理
  • 6.2.1PP附件数据
  • 6.2.2荷兰小数据
  • 6.2.3西班牙语词性数据
  • 6.3监督存储网络
  • 6.3.1PP连接
  • 6.3.2荷兰小商品
  • 6.3.3西班牙语词性标记
  • 6.4半监督存储网络
  • 6.5半监督存储网络:实验和结果
  • 6.6小结
  • 6.7代码和数据

7注意力机制

  • 7.1神经注意力机制
  • 7.2数据
  • 7.3静态注意力机制:MLP
  • 7.4暂态注意力机制:LSTM
  • 7.4.1实验
  • 7.5小结

8多任务学习

  • 8.1简介
  • 8.2数据
  • 8.3.1数据处理
  • 8.3.2硬参数共享
  • 8.3.3软参数共享
  • 8.3.4混合参数共享
  • 8.4主题分类
  • 8.4.1数据处理
  • 8.4.2硬参数共享
  • 8.4.3软参数共享
  • 8.4.4混合参数共享
  • 8.5词性和命名实体识别数据
  • 8.5.1数据处理
  • 8.5.2硬参数共享
  • 8.5.3软参数共享
  • 8.5.4混合参数共享
  • 8.6结论

附录

附录A:NLP

附录B:矩阵代数

附录C:超参数估计和分类器性能评估

成为VIP会员查看完整内容
0
33

讲座题目

深层贝叶斯挖掘、学习与理解:Deep Bayesian Mining, Learning and Understanding

讲座简介

本教程介绍了自然语言的深度贝叶斯学习的进展,其应用广泛,从语音识别到文档摘要、文本分类、文本分割、信息提取、图像字幕生成、句子生成、对话控制、情感分类、推荐系统,问答和机器翻译,举几个例子。传统上,“深度学习”被认为是一种基于实值确定性模型进行推理或优化的学习过程。从大量词汇中提取的单词、句子、实体、动作和文档中的“语义结构”在数学逻辑或计算机程序中可能没有得到很好的表达或正确的优化。自然语言离散或连续潜变量模型中的“分布函数”可能无法正确分解或估计。本教程介绍了统计模型和神经网络的基本原理,重点介绍了一系列先进的贝叶斯模型和深层模型,包括分层Dirichlet过程、中餐馆过程、分层Pitman-Yor过程、印度自助餐过程、递归神经网络、长时短期记忆,序列到序列模型,变分自动编码器,生成对抗网络,注意机制,记忆增强神经网络,跳跃神经网络,随机神经网络,预测状态神经网络,策略神经网络。我们将介绍这些模型是如何连接的,以及它们为什么在自然语言中的符号和复杂模式的各种应用中起作用。为了解决复杂模型的优化问题,提出了变分推理和抽样方法。词和句子的嵌入、聚类和共聚类与语言和语义约束相结合。本文提出了一系列的案例研究,以解决深度贝叶斯挖掘、学习和理解中的不同问题。最后,我们将指出未来研究的一些方向和展望。

讲座嘉宾

Jen-Tzung Chien,詹增建于一九九七年获中华民国新竹国立清华大学电机工程博士学位。现任台湾新竹国立交通大学电机与电脑工程系及电脑科学系主任教授。2010年,他在纽约约克敦高地IBM T.J.沃森研究中心担任客座教授。他的研究兴趣包括机器学习、深度学习、自然语言处理和计算机视觉。

成为VIP会员查看完整内容
0
49

题目: Machine learning and the physical sciences

摘要:

机器学习(ML)包含广泛的算法和建模工具,用于大量的数据处理任务,这些任务近年来已经进入大多数科学学科。本文有选择地回顾了机器学习与物理科学接口的最新研究进展。这包括由物理洞察力驱动的ML的概念发展,机器学习技术在物理中的几个领域的应用以及这两个领域之间的交叉。在介绍了机器学习方法和原理的基本概念之后,举例说明了如何用统计物理来理解ML中的方法,然后介绍了ML方法在粒子物理和宇宙学、量子多体物理、量子计算、化学和材料物理中的应用。此外,还强调了针对加速ML的新型计算体系结构的研究和开发。每个部分都描述了最近的成功以及特定领域的方法和挑战。

作者简介:

Giuseppe Carleo于2018年加入了位于美国计算量子物理中心的Flatiron研究所。2007年,他在罗马大学获得物理学学士学位;2011年,他在意大利国际高等研究学院获得凝聚态理论博士学位。他在法国光学研究所和瑞士苏黎世联邦理工学院获得博士后。他也是苏黎世联邦理工学院计算量子物理学的讲师。Carleo的主要研究方向是发展先进的数值算法来研究强相互作用量子系统的挑战性问题。他的研究应用范围包括凝聚态物质、超冷原子和量子计算。他对量子蒙特卡罗方法的发展做出了贡献,包括平衡和动态特性,包括时变蒙特卡罗和神经网络量子态。在CCQ,他正在开发和推广基于人工智能的新技术来解决量子问题。他是开源项目NetKet的创始人和开发负责人。

成为VIP会员查看完整内容
0
21

主题: Mathematics of Deep Learning

摘要: 本教程将介绍一些深神经网络的理论结果,其目的是为属性提供数学证明,如逼近能力、收敛性、全局最优性、不变性、学习表征的稳定性、泛化误差等。讨论了该理论在神经网络训练中的应用。本教程将从90年代早期的神经网络理论(包括著名的Hornik等人的研究成果)开始。还有Cybenko)。接下来,我们将讨论过去五年中为深度学习而建立的最新理论成果。文中还将讨论该理论所遵循的实际考虑。

邀请嘉宾: Raja Giryes,是特拉维夫大学电气工程学院的助理教授。他获得了海拉以色列理工学院计算机科学系理学学士(2007)、理学硕士(M.Elad教授和Y.C.Eldar教授监督,2009)和博士(M.Elad教授监督,2014)学位。Raja是Technion(2013年11月至2014年7月)计算机科学系和杜克大学G.Sapiro教授实验室(2014年7月和2015年8月)的博士后。他的研究兴趣在于信号和图像处理与机器学习的交叉点,特别是在深度学习、反问题、稀疏表示和信号和图像建模方面。Raja获得了EURASIP最佳博士奖、ERC StG奖、Maof优秀青年教师奖(2016-2019)、VATAT优秀博士后奖学金(2014-2015)、英特尔研究与卓越奖(2005、2013),德克萨斯仪器公司(2008)颁发的信号处理卓越奖(ESPA),是Azrieli研究员计划(2010-2013)的一部分。

下载链接: 链接:https://pan.baidu.com/s/1tHvvi7codVe4kdb1quZB1w 提取码:99fm

成为VIP会员查看完整内容
0
27

课程介绍:

深度学习正在改变人工智能领域,但缺乏扎实的理论基础。这种事务状态极大地阻碍了进一步的发展,例如耗时的超参数优化或对抗性机器学习中遇到的非凡困难。我们为期三天的研讨会基于我们确定为当前的主要瓶颈:了解深度神经网络的几何结构。这个问题是数学,计算机科学和实用机器学习的融合。我们邀请这些领域的领导者加强新的合作,并为深度学习的奥秘寻找新的攻击角度。

主讲人:

Peter Bartlett,加州大学伯克利分校教授,工作于计算机科学和统计部门、伯克利人工智能研究实验室、西蒙斯计算理论研究所。

Leon Bottou,一名研究科学家,对机器学习和人工智能有着广泛的兴趣。近年来,在大规模学习和随机梯度算法方面的工作受到了广泛的关注。他也以DjVu文件压缩系统而闻名,于2015年3月加入Facebook人工智能研究。

Anna Gilbert,在芝加哥大学获得理学学士学位,在普林斯顿大学获得数学博士学位;1997年,是耶鲁大学和at&T实验室研究所的博士后研究员。1998年至2004年,她是新泽西州弗洛勒姆公园at&T实验室研究部的技术人员。从那以后,她一直在密歇根大学数学系工作,现在是那里的一名教授。

Piotr Indyk,电气工程和计算机科学系的托马斯D.和弗吉尼亚W.卡伯特教授。计算机科学与人工智能实验室,无线麻省理工学院,大数据学院和MIFODS计算组的成员。兴趣方向:高维计算几何(包括近似最近邻搜索)、数据流算法、稀疏恢复、压缩感知、机器学习。

S. T. Yau,中国科学院数学科学研究所所长,哈佛大学数学系教授。感兴趣的领域:微分几何,微分方程和数学物理。

成为VIP会员查看完整内容
AI-Institute-Geometry-of-Deep-Learning-2019-Day-1-Session-4-SLIDES.pdf
AI-Institute-Geometry-of-Deep-Learning-2019-Day-1-Session-2-SLIDES.pdf
AI-Institute-Geometry-of-Deep-Learning-2019-Day-1-Session-1-SLIDES.pdf
AI-Institute-Geometry-of-Deep-Learning-2019-Day-1-Session-3-SLIDES.pdf
0
26

主题:Deep Learning for Graphs: Models and Applications

摘要:图提供了多种类型的数据的通用表示,而深度学习在表示学习方面显示了巨大的能力。因此,用图连接深度学习提供了机会,使各种现实世界问题的通用解决方案成为可能。然而,传统的深度学习技术对常规网格数据(如图像和序列)具有破坏性,因此不能直接应用于图结构数据。因此,将这两个领域结合起来面临着巨大的挑战。在本教程中,我将全面概述图深度学习的最新进展,包括模型和应用。特别地,我将介绍一些基本概念,回顾最先进算法,并举例说明各种重要的应用。最后,我将通过讨论开放问题和挑战来总结本教程。

嘉宾简介:唐继良(Jiang Tang)自2016年秋季@起担任密歇根州立大学计算机科学与工程系的助理教授。在此之前,他是Yahoo Research的研究科学家,并于2015年从亚利桑那州立大学获得博士学位。他的研究兴趣包括社交计算,数据挖掘和机器学习及其在教育中的应用。他曾获得2019年NSF职业奖,2015年KDD最佳论文亚军和6项最佳论文奖,包括WSDM2018和KDD2016。他是会议组织者(例如KDD,WSDM和SDM)和期刊编辑(例如TKDD)。他的研究成果发表在高排名的期刊和顶级会议论文集上,获得了数千篇引文(Google学术搜索)和广泛的媒体报道。

PPT链接:https://pan.baidu.com/s/1TMv5YsQbwPcRzGy-BkY-bg

成为VIP会员查看完整内容
0
37
小贴士
相关VIP内容
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
140+阅读 · 2020年1月13日
【UAI 2019 Tutorials】深度学习数学(Mathematics of Deep Learning)
【课程推荐】 深度学习中的几何(Geometry of Deep Learning)
专知会员服务
26+阅读 · 2019年11月10日
相关资讯
中文版新书《动手学深度学习》pdf免费分享
深度学习与NLP
62+阅读 · 2018年12月2日
大牛的《深度学习》笔记,Deep Learning速成教程
极市平台
16+阅读 · 2018年4月10日
深度学习(deep learning)发展史
机器学习算法与Python学习
6+阅读 · 2018年3月19日
搞人工智能必备“数学库”
机器学习算法与Python学习
3+阅读 · 2017年11月20日
一文读懂深度学习(附学习资源)
深度学习世界
5+阅读 · 2017年11月9日
相关论文
Financial Time Series Representation Learning
Philippe Chatigny,Jean-Marc Patenaude,Shengrui Wang
10+阅读 · 2020年3月27日
Wenwu Zhu,Xin Wang,Peng Cui
18+阅读 · 2020年1月2日
Optimization for deep learning: theory and algorithms
Ruoyu Sun
78+阅读 · 2019年12月19日
Bernhard Schölkopf
9+阅读 · 2019年11月24日
Yue Yu,Jie Chen,Tian Gao,Mo Yu
5+阅读 · 2019年4月22日
Claudio Gambella,Bissan Ghaddar,Joe Naoum-Sawaya
7+阅读 · 2019年1月16日
Peter W. Battaglia,Jessica B. Hamrick,Victor Bapst,Alvaro Sanchez-Gonzalez,Vinicius Zambaldi,Mateusz Malinowski,Andrea Tacchetti,David Raposo,Adam Santoro,Ryan Faulkner,Caglar Gulcehre,Francis Song,Andrew Ballard,Justin Gilmer,George Dahl,Ashish Vaswani,Kelsey Allen,Charles Nash,Victoria Langston,Chris Dyer,Nicolas Heess,Daan Wierstra,Pushmeet Kohli,Matt Botvinick,Oriol Vinyals,Yujia Li,Razvan Pascanu
6+阅读 · 2018年10月17日
Antoine J. -P. Tixier
10+阅读 · 2018年8月30日
Benjamin Recht
5+阅读 · 2018年6月25日
Top