Scikit-learn项目最早由数据科学家David Cournapeau 在2007 年发起,需要NumPy和SciPy等其他包的支持,是Python语言中专门针对机器学习应用而发展起来的一款开源框架。

VIP内容

这本机器学习畅销书基于TensorFlow 2和Scikit-Learn的新版本进行了全面更新,通过具体的示例、非常少的理论和可用于生产环境的Python框架,从零帮助你直观地理解并掌握构建智能系统所需要的概念和工具。

全书分为两部分。第一部分介绍机器学习基础,涵盖以下主题:什么是机器学习,它试图解决什么问题,以及系统的主要类别和基本概念;第二部分介绍神经网络和深度学习,涵盖以下主题:什么是神经网络以及它们有什么用,使用TensorFlow和Keras构建和训练神经网络的技术,以及如何使用强化学习构建可以通过反复试错,学习好的策略的代理程序。第一部分主要基于Scikit-Learn,而第二部分则使用TensorFlow和Keras。

奥雷利安·杰龙(Aurélien Géron)是机器学习方面的顾问。他曾就职于Google,在2013年到2016年领导过YouTube视频分类团队。他是Wifirst公司的创始人并于2002年至2012年担任该公司的首席技术官。2001年,他创办Ployconseil公司并任首席技术官。

成为VIP会员查看完整内容
1
80

最新论文

Modern software relies heavily on data and machine learning, and affects decisions that shape our world. Unfortunately, recent studies have shown that because of biases in data, software systems frequently inject bias into their decisions, from producing better closed caption transcriptions of men's voices than of women's voices to overcharging people of color for financial loans. To address bias in machine learning, data scientists need tools that help them understand the trade-offs between model quality and fairness in their specific data domains. Toward that end, we present fairkit-learn, a toolkit for helping data scientists reason about and understand fairness. Fairkit-learn works with state-of-the-art machine learning tools and uses the same interfaces to ease adoption. It can evaluate thousands of models produced by multiple machine learning algorithms, hyperparameters, and data permutations, and compute and visualize a small Pareto-optimal set of models that describe the optimal trade-offs between fairness and quality. We evaluate fairkit-learn via a user study with 54 students, showing that students using fairkit-learn produce models that provide a better balance between fairness and quality than students using scikit-learn and IBM AI Fairness 360 toolkits. With fairkit-learn, users can select models that are up to 67% more fair and 10% more accurate than the models they are likely to train with scikit-learn.

0
0
下载
预览
Top