有兴趣的数据科学专业人士可以通过本书学习Scikit-Learn图书馆以及机器学习的基本知识。本书结合了Anaconda Python发行版和流行的Scikit-Learn库,演示了广泛的有监督和无监督机器学习算法。通过用Python编写的清晰示例,您可以在家里自己的机器上试用和试验机器学习的原理。

所有的应用数学和编程技能需要掌握的内容,在这本书中涵盖。不需要深入的面向对象编程知识,因为工作和完整的例子被提供和解释。必要时,编码示例是深入和复杂的。它们也简洁、准确、完整,补充了介绍的机器学习概念。使用示例有助于建立必要的技能,以理解和应用复杂的机器学习算法。

对于那些在机器学习方面追求职业生涯的人来说,Scikit-Learn机器学习应用手册是一个很好的起点。学习这本书的学生将学习基本知识,这是胜任工作的先决条件。读者将接触到专门为数据科学专业人员设计的蟒蛇分布,并将在流行的Scikit-Learn库中构建技能,该库是Python世界中许多机器学习应用程序的基础。

你将学习

  • 使用Scikit-Learn中常见的简单和复杂数据集
  • 将数据操作为向量和矩阵,以进行算法处理
  • 熟悉数据科学中使用的蟒蛇分布
  • 应用带有分类器、回归器和降维的机器学习
  • 优化算法并为每个数据集找到最佳算法
  • 从CSV、JSON、Numpy和panda格式加载数据并保存为这些格式

这本书是给谁的

  • 有抱负的数据科学家渴望通过掌握底层的基础知识进入机器学习领域,而这些基础知识有时在急于提高生产力的过程中被忽略了。一些面向对象编程的知识和非常基本的线性代数应用将使学习更容易,尽管任何人都可以从这本书获益。
成为VIP会员查看完整内容
0
112

相关内容

Python是一种面向对象的解释型计算机程序设计语言,在设计中注重代码的可读性,同时也是一种功能强大的通用型语言。

通过这个紧凑的实用指南,开始使用Python进行数据分析。这本书包括三个练习和一个用正确的格式从Python代码中获取数据的案例研究。使用Python学习数据分析还可以帮助您使用分析发现数据中的意义,并展示如何可视化数据。

每一节课都尽可能是独立的,允许您根据需要插入和退出示例。如果您已经在使用Python进行数据分析,那么您会发现您希望知道如何使用Python来完成许多事情。然后,您可以将这些技术直接应用到您自己的项目中。

如果您不使用Python进行数据分析,那么本书从一开始就带您了解基础知识,为您在该主题中打下坚实的基础。当你阅读完这本书的时候,你会对如何使用Python进行数据分析有更好的理解。

你将学到什么

  • 从Python代码中获取数据
  • 准备数据及其格式
  • 找出数据的意义
  • 使用iPython可视化数据

这本书是给谁的

想学习使用Python进行数据分析的同学。建议您具有Python方面的经验,但不是必需的,因为您需要具有数据分析或数据科学方面的经验。

成为VIP会员查看完整内容
0
84

介绍

这本书在保持非常务实的教导和结果导向付出很大的精力。构建聊天机器人不只是完成一个教程或遵循几个步骤,它本身就是一种技能。这本书肯定不会用大量的文本和过程让你感到无聊;相反,它采用的是边做边学的方法。到目前为止,在你的生活中,你肯定至少使用过一个聊天机器人。无论你是不是一个程序员,一旦你浏览这本书,你会发现构建模块的聊天机器人,所有的奥秘将被揭开。建立聊天机器人可能看起来很困难,但这本书将让你使它如此容易。我们的大脑不是用来直接处理复杂概念的;相反,我们一步一步地学习。当你读这本书的时候,从第一章到最后一章,你会发现事情的进展是多么的清晰。虽然你可以直接翻到任何一章,但我强烈建议你从第一章开始,因为它肯定会支持你的想法。这本书就像一个网络系列,你在读完一章之后就无法抗拒下一章的诱惑。在阅读完这本书后,你所接触到的任何聊天机器人都会在你的脑海中形成一幅关于聊天机器人内部是如何设计和构建的画面。

这本书适合谁?

这本书将作为学习与聊天机器人相关的概念和学习如何建立他们的一个完整的资源。那些将会发现这本书有用的包括: Python web开发人员希望扩大他们的知识或职业到聊天机器人开发。 学生和有抱负的程序员想获得一种新的技能通过亲身体验展示的东西,自然语言爱好者希望从头开始学习。 企业家如何构建一个聊天机器人的伟大的想法,但没有足够的技术关于如何制作聊天机器人的可行性信息。 产品/工程经理计划与聊天机器人相关项目。

如何使用这本书?

请记住,这本书的写作风格和其他书不一样。读这本书的时候要记住,一旦你完成了这本书,你就可以自己建造一个聊天机器人,或者教会别人如何建造一个聊天机器人。在像阅读其他书籍一样阅读这本书之前,务必记住以下几点:

  • 这本书涵盖了构建聊天机器人所需的几乎所有内容,而不是现有内容。
  • 这本书是关于花更多的时间在你的系统上做事情的,这本书就在你身边。确保您执行每个代码片段并尝试编写代码;不要复制粘贴。
  • 一定要按照书中的步骤去做;如果你不理解一些事情,不要担心。你将在本章的后面部分了解到。
  • 可以使用本书所提供的源代码及Jupyter NoteBook作为参考。

内容概要

  • Chapter 1: 在本章中,你将从商业和开发人员的角度了解与聊天机器人相关的事情。这一章为我们熟悉chatbots概念并将其转换为代码奠定了基础。希望在本章结束时,你会明白为什么你一定要为自己或你的公司创建一个聊天机器人。
  • Chapter 2: 在本章中会涉及聊天机器人的自然语言处理,你将学习到聊天机器人需要NLP时应该使用哪些工具和方法。这一章不仅教你在NLP的方法,而且还采取实际的例子和演示与编码的例子。本章还讨论了为什么使用特定的NLP方法可能需要在聊天机器人。注意,NLP本身就是一种技能。
  • Chapter 3: 在本章中,你将学习如何使用像Dialogflow这样的工具以一种友好而简单的方式构建聊天机器人。如果你不是程序员,你肯定会喜欢它,因为它几乎不需要编程技能。
  • Chapter 4:在本章中,你将学习如何以人们想要的方式构建聊天机器人。标题说的很艰难,但一旦你完成了前一章,你会想要更多,因为这一章将教如何建立内部聊天机器人从零开始,以及如何使用机器学习算法训练聊天机器人。
  • Chapter 5:在本章中,部署你的聊天机器人纯粹是设计给你的聊天机器人应用一个最后的推动。当你经历了创建聊天机器人的简单和艰难的过程后,你肯定不想把它留给自己。你将学习如何展示你的聊天机器人到世界使用Facebook和Slack,最后,整合他们在你自己的网站。
成为VIP会员查看完整内容
Building Chatbots with Python.pdf
0
92

本书介绍了自由软件Python及其在统计数据分析中的应用。它涵盖了连续、离散和分类数据的常见统计测试,以及线性回归分析和生存分析和贝叶斯统计的主题。每个测试的Python解决方案的工作代码和数据,以及易于遵循的Python示例,可以被读者复制,并加强他们对主题的直接理解。随着Python生态系统的最新进展,Python已经成为科学计算的一种流行语言,为统计数据分析提供了一个强大的环境,并且是R的一个有趣的替代选择。本书面向硕士和博士学生,主要来自生命和医学科学,具有统计学的基本知识。由于该书还提供了一些统计方面的背景知识,因此任何想要执行统计数据分析的人都可以使用这本书。

成为VIP会员查看完整内容
0
56

数据科学库、框架、模块和工具包非常适合进行数据科学研究,但它们也是深入研究这一学科的好方法,不需要真正理解数据科学。在本书中,您将了解到许多最基本的数据科学工具和算法都是通过从头实现来实现的。

如果你有数学天赋和一些编程技能,作者Joel Grus将帮助你熟悉作为数据科学核心的数学和统计,以及作为数据科学家的入门技能。如今,这些杂乱的、充斥着海量数据的数据,为一些甚至没人想过要问的问题提供了答案。这本书为你提供了挖掘这些答案的诀窍。

参加Python速成班

  • 学习线性代数、统计和概率的基础知识,并了解如何以及何时在数据科学中使用它们
  • 收集、探索、清理、分析和操作数据
  • 深入了解机器学习的基本原理
  • 实现诸如k近邻、朴素贝叶斯、线性和逻辑回归、决策树、神经网络和聚类等模型
  • 探索推荐系统、自然语言处理、网络分析、MapReduce和数据库
成为VIP会员查看完整内容
0
66

简单易懂,读起来很有趣,介绍Python对于初学者和语言新手都是理想的。作者Bill Lubanovic带您从基础知识到更复杂和更多样的主题,混合教程和烹饪书风格的代码配方来解释Python 3中的概念。章节结尾的练习可以帮助你练习所学的内容。

您将获得该语言的坚实基础,包括测试、调试、代码重用和其他开发技巧的最佳实践。本书还向您展示了如何使用各种Python工具和开放源码包将Python用于商业、科学和艺术领域的应用程序。

  • 学习简单的数据类型,以及基本的数学和文本操作
  • 在Python的内置数据结构中使用数据协商技术
  • 探索Python代码结构,包括函数的使用
  • 用Python编写大型程序,包括模块和包
  • 深入研究对象、类和其他面向对象的特性
  • 检查从平面文件到关系数据库和NoSQL的存储
  • 使用Python构建web客户机、服务器、api和服务
  • 管理系统任务,如程序、进程和线程
  • 了解并发性和网络编程的基础知识

成为VIP会员查看完整内容
0
104

改进您的编程技术和方法,成为一个更有生产力和创造性的Python程序员。本书探索了一些概念和特性,这些概念和特性不仅将改进您的代码,而且还将帮助您理解Python社区,并对Python哲学有深入的了解和详细的介绍。

专业的Python 3,第三版给你的工具写干净,创新的代码。它首先回顾了一些核心的Python原则,这些原则将在本书后面的各种概念和示例中进行说明。本书的前半部分探讨了函数、类、协议和字符串的各个方面,描述了一些技术,这些技术可能不是常见的知识,但它们共同构成了坚实的基础。后面的章节涉及文档、测试和应用程序分发。在此过程中,您将开发一个复杂的Python框架,该框架将整合在本书中所学到的思想。

这个版本的更新包括Python 3中迭代器的角色、用Scrapy和BeautifulSoup进行web抓取、使用请求调用没有字符串的web页面、用于分发和安装的新工具等等。在本书的最后,您将准备好部署不常见的特性,这些特性可以将您的Python技能提升到下一个级别。

你将学习

  • 用各种类型的Python函数实现程序
  • 使用类和面向对象编程
  • 使用标准库和第三方库中的字符串
  • 使用Python获取web站点数据
  • 通过编写测试套件来自动化单元测试
  • 回顾成像、随机数生成和NumPy科学扩展
  • 理解Python文档的精髓,以帮助您决定分发代码的最佳方式

这本书是给谁看的 熟悉Python的中级程序员,希望提升到高级水平。您应该至少编写了一个简单的Python应用程序,并且熟悉基本的面向对象方法、使用交互式解释器和编写控制结构。

成为VIP会员查看完整内容
0
121

本书通过提供真实的案例研究和示例,为使用Python库进行机器学习提供了坚实的基础。它涵盖了诸如机器学习基础、Python入门、描述性分析和预测分析等主题。包括高级机器学习概念,如决策树学习、随机森林、增强、推荐系统和文本分析。这本书在理论理解和实际应用之间采取了一种平衡的方法。所有的主题都包括真实世界的例子,并提供如何探索、构建、评估和优化机器学习模型的逐步方法。

成为VIP会员查看完整内容
Machine Learning using Python by Manaranjan Pradhan.pdf
0
178

本书是为那些对数据科学感兴趣的Python程序员编写的。唯一的先决条件是Python的基本知识。不需要有使用复杂算法的经验。数学背景不是必须的。读完这本书的业余爱好者将获得获得第一份高薪数据科学工作所必需的技能。这些技能包括:

  • 概率论和统计学的基础。
  • 监督和非监督机器学习技术。
  • 关键的数据科学图书馆,如NumPy, SciPy, panda, Matplotlib和Scikit-Learn。
  • 解决问题的能力。

开放式解决问题的能力对于数据科学职业来说是必不可少的。不幸的是,这些能力不能通过阅读来获得。要成为一个问题解决者,你必须坚持解决困难的问题。带着这种想法,我的书围绕着案例研究展开:以真实世界为模型的开放式问题。案例研究范围从在线广告分析到使用新闻数据跟踪疾病暴发。

成为VIP会员查看完整内容
0
124

简介:

科学专业人员可以通过本书学习Scikit-Learn库以及机器学习的基础知识。该书将Anaconda Python发行版与流行的Scikit-Learn库结合在一起,展示了各种有监督和无监督的机器学习算法。通过Python编写的清晰示例向读者介绍机器学习的原理,以及相关代码。

本书涵盖了掌握这些内容所需的所有应用数学和编程技能。不需要深入的面向对象编程知识,因为可以提供并说明完整的示例。必要时,编码示例很深入且很复杂。它们也简洁,准确,完整,是对引入的机器学习概念的补充。处理示例有助于建立理解和应用复杂机器学习算法所需的技能。

本书的学生将学习作为胜任力前提的基础知识。读者将了解专门为数据科学专业人员设计的Python Anaconda发行版,并将在流行的Scikit-Learn库中构建技能,该库是Python领域许多机器学习应用程序的基础。

本书内容包括:

  • 使用Scikit-Learn通用的简单和复杂数据集
  • 将数据处理为向量和矩阵以进行算法处理
  • 熟悉数据科学中使用的Anaconda发行版
  • 通过分类器,回归器和降维应用机器学习
  • 调整算法并为每个数据集找到最佳算法
  • 从CSV,JSON,Numpy和Pandas格式加载数据并保存

内容介绍:

这本书分为八章。 第1章介绍了机器学习,Anaconda和Scikit-Learn的主题。 第2章和第3章介绍算法分类。 第2章对简单数据集进行分类,第3章对复杂数据集进行分类。 第4章介绍了回归预测模型。 第5章和第6章介绍分类调整。 第5章调整简单数据集,第6章调整复杂数据集。 第7章介绍了预测模型回归调整。 第8章将所有知识汇总在一起,以整体方式审查和提出发现。

作者介绍:

David Paper博士是犹他州立大学管理信息系统系的教授。他写了两本书-商业网络编程:Oracle的PHP面向对象编程和Python和MongoDB的数据科学基础。他在诸如组织研究方法,ACM通讯,信息与管理,信息资源管理期刊,AIS通讯,信息技术案例与应用研究期刊以及远程计划等参考期刊上发表了70余篇论文。他还曾在多个编辑委员会担任过各种职务,包括副编辑。Paper博士还曾在德州仪器(TI),DLS,Inc.和凤凰城小型企业管理局工作。他曾为IBM,AT&T,Octel,犹他州交通运输部和空间动力实验室执行过IS咨询工作。 Paper博士的教学和研究兴趣包括数据科学,机器学习,面向对象的程序设计和变更管理。

目录:

成为VIP会员查看完整内容
0
60
小贴士
相关VIP内容
专知会员服务
84+阅读 · 2020年6月29日
专知会员服务
78+阅读 · 2020年6月4日
专知会员服务
66+阅读 · 2020年5月19日
专知会员服务
104+阅读 · 2020年5月17日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
178+阅读 · 2020年3月17日
【2020新书】数据科学:十大Python项目,247页pdf
专知会员服务
124+阅读 · 2020年2月21日
相关资讯
Python机器学习课程(代码与教程)
专知
17+阅读 · 2019年5月13日
开发 | 用 Python 做机器学习不得不收藏的重要库
AI科技评论
5+阅读 · 2019年1月8日
从入门到头秃,2018年机器学习图书TOP10
新智元
11+阅读 · 2018年12月8日
Python & 机器学习之项目实践 | 赠书
人工智能头条
10+阅读 · 2017年12月26日
机器学习实践指南
Linux中国
3+阅读 · 2017年9月28日
Python机器学习Kaggle案例实战
炼数成金订阅号
7+阅读 · 2017年8月10日
相关论文
Varun Kumar,Ashutosh Choudhary,Eunah Cho
7+阅读 · 2020年3月4日
Mining Disinformation and Fake News: Concepts, Methods, and Recent Advancements
Kai Shu,Suhang Wang,Dongwon Lee,Huan Liu
7+阅读 · 2020年1月2日
A Survey of Learning Causality with Data: Problems and Methods
Ruocheng Guo,Lu Cheng,Jundong Li,P. Richard Hahn,Huan Liu
7+阅读 · 2018年9月25日
Ting-Ting Liang,Satoshi Tsutsui,Liangcai Gao,Jing-Jing Lu,Mengyan Sun
4+阅读 · 2018年6月1日
Frederick Liu,Han Lu,Graham Neubig
3+阅读 · 2018年3月28日
Holger R. Roth,Chen Shen,Hirohisa Oda,Masahiro Oda,Yuichiro Hayashi,Kazunari Misawa,Kensaku Mori
5+阅读 · 2018年3月23日
Kuang-Huei Lee,Xi Chen,Gang Hua,Houdong Hu,Xiaodong He
3+阅读 · 2018年3月21日
Alexis Conneau,Guillaume Lample,Marc'Aurelio Ranzato,Ludovic Denoyer,Hervé Jégou
7+阅读 · 2018年1月30日
Ling Zhang,Vissagan Gopalakrishnan,Le Lu,Ronald M. Summers,Joel Moss,Jianhua Yao
4+阅读 · 2018年1月25日
Kriste Krstovski,Michael J. Kurtz,David A. Smith,Alberto Accomazzi
3+阅读 · 2017年12月18日
Top