In recent years, deep neural models have been widely adopted for text matching tasks, such as question answering and information retrieval, showing improved performance as compared with previous methods. In this paper, we introduce the MatchZoo toolkit that aims to facilitate the designing, comparing and sharing of deep text matching models. Specifically, the toolkit provides a unified data preparation module for different text matching problems, a flexible layer-based model construction process, and a variety of training objectives and evaluation metrics. In addition, the toolkit has implemented two schools of representative deep text matching models, namely representation-focused models and interaction-focused models. Finally, users can easily modify existing models, create and share their own models for text matching in MatchZoo.

5
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/

For many computer vision applications such as image captioning, visual question answering, and person search, learning discriminative feature representations at both image and text level is an essential yet challenging problem. Its challenges originate from the large word variance in the text domain as well as the difficulty of accurately measuring the distance between the features of the two modalities. Most prior work focuses on the latter challenge, by introducing loss functions that help the network learn better feature representations but fail to account for the complexity of the textual input. With that in mind, we introduce TIMAM: a Text-Image Modality Adversarial Matching approach that learns modality-invariant feature representations using adversarial and cross-modal matching objectives. In addition, we demonstrate that BERT, a publicly-available language model that extracts word embeddings, can successfully be applied in the text-to-image matching domain. The proposed approach achieves state-of-the-art cross-modal matching performance on four widely-used publicly-available datasets resulting in absolute improvements ranging from 2% to 5% in terms of rank-1 accuracy.

0
6
下载
预览

We study learning of a matching model for response selection in retrieval-based dialogue systems. The problem is equally important with designing the architecture of a model, but is less explored in existing literature. To learn a robust matching model from noisy training data, we propose a general co-teaching framework with three specific teaching strategies that cover both teaching with loss functions and teaching with data curriculum. Under the framework, we simultaneously learn two matching models with independent training sets. In each iteration, one model transfers the knowledge learned from its training set to the other model, and at the same time receives the guide from the other model on how to overcome noise in training. Through being both a teacher and a student, the two models learn from each other and get improved together. Evaluation results on two public data sets indicate that the proposed learning approach can generally and significantly improve the performance of existing matching models.

0
4
下载
预览

Previous cross-lingual knowledge graph (KG) alignment studies rely on entity embeddings derived only from monolingual KG structural information, which may fail at matching entities that have different facts in two KGs. In this paper, we introduce the topic entity graph, a local sub-graph of an entity, to represent entities with their contextual information in KG. From this view, the KB-alignment task can be formulated as a graph matching problem; and we further propose a graph-attention based solution, which first matches all entities in two topic entity graphs, and then jointly model the local matching information to derive a graph-level matching vector. Experiments show that our model outperforms previous state-of-the-art methods by a large margin.

0
13
下载
预览

This paper seeks to model human language by the mathematical framework of quantum physics. With the well-designed mathematical formulations in quantum physics, this framework unifies different linguistic units in a single complex-valued vector space, e.g. words as particles in quantum states and sentences as mixed systems. A complex-valued network is built to implement this framework for semantic matching. With well-constrained complex-valued components, the network admits interpretations to explicit physical meanings. The proposed complex-valued network for matching (CNM) achieves comparable performances to strong CNN and RNN baselines on two benchmarking question answering (QA) datasets.

0
3
下载
预览

Automatic generation of paraphrases from a given sentence is an important yet challenging task in natural language processing (NLP), and plays a key role in a number of applications such as question answering, search, and dialogue. In this paper, we present a deep reinforcement learning approach to paraphrase generation. Specifically, we propose a new framework for the task, which consists of a \textit{generator} and an \textit{evaluator}, both of which are learned from data. The generator, built as a sequence-to-sequence learning model, can produce paraphrases given a sentence. The evaluator, constructed as a deep matching model, can judge whether two sentences are paraphrases of each other. The generator is first trained by deep learning and then further fine-tuned by reinforcement learning in which the reward is given by the evaluator. For the learning of the evaluator, we propose two methods based on supervised learning and inverse reinforcement learning respectively, depending on the type of available training data. Empirical study shows that the learned evaluator can guide the generator to produce more accurate paraphrases. Experimental results demonstrate the proposed models (the generators) outperform the state-of-the-art methods in paraphrase generation in both automatic evaluation and human evaluation.

0
3
下载
预览

In this work we introduce a cross modal image retrieval system that allows both text and sketch as input modalities for the query. A cross-modal deep network architecture is formulated to jointly model the sketch and text input modalities as well as the the image output modality, learning a common embedding between text and images and between sketches and images. In addition, an attention model is used to selectively focus the attention on the different objects of the image, allowing for retrieval with multiple objects in the query. Experiments show that the proposed method performs the best in both single and multiple object image retrieval in standard datasets.

0
5
下载
预览

In this paper, we study the problem of image-text matching. Inferring the latent semantic alignment between objects or other salient stuffs (e.g. snow, sky, lawn) and the corresponding words in sentences allows to capture fine-grained interplay between vision and language, and makes image-text matching more interpretable. Prior works either simply aggregate the similarity of all possible pairs of regions and words without attending differentially to more and less important words or regions, or use a multi-step attentional process to capture limited number of semantic alignments which is less interpretable. In this paper, we present Stacked Cross Attention to discover the full latent alignments using both image regions and words in sentence as context and infer the image-text similarity. Our approach achieves the state-of-the-art results on the MS-COCO and Flickr30K datasets. On Flickr30K, our approach outperforms the current best methods by 22.1% in text retrieval from image query, and 18.2% in image retrieval with text query (based on Recall@1). On MS-COCO, our approach improves sentence retrieval by 17.8% and image retrieval by 16.6% (based on Recall@1 using the 5K test set).

0
3
下载
预览

Deep learning methods employ multiple processing layers to learn hierarchical representations of data, and have produced state-of-the-art results in many domains. Recently, a variety of model designs and methods have blossomed in the context of natural language processing (NLP). In this paper, we review significant deep learning related models and methods that have been employed for numerous NLP tasks and provide a walk-through of their evolution. We also summarize, compare and contrast the various models and put forward a detailed understanding of the past, present and future of deep learning in NLP.

0
7
下载
预览

In recent years, person re-identification (re-id) catches great attention in both computer vision community and industry. In this paper, we propose a new framework for person re-identification with a triplet-based deep similarity learning using convolutional neural networks (CNNs). The network is trained with triplet input: two of them have the same class labels and the other one is different. It aims to learn the deep feature representation, with which the distance within the same class is decreased, while the distance between the different classes is increased as much as possible. Moreover, we trained the model jointly on six different datasets, which differs from common practice - one model is just trained on one dataset and tested also on the same one. However, the enormous number of possible triplet data among the large number of training samples makes the training impossible. To address this challenge, a double-sampling scheme is proposed to generate triplets of images as effective as possible. The proposed framework is evaluated on several benchmark datasets. The experimental results show that, our method is effective for the task of person re-identification and it is comparable or even outperforms the state-of-the-art methods.

0
3
下载
预览

Learning from a few examples remains a key challenge in machine learning. Despite recent advances in important domains such as vision and language, the standard supervised deep learning paradigm does not offer a satisfactory solution for learning new concepts rapidly from little data. In this work, we employ ideas from metric learning based on deep neural features and from recent advances that augment neural networks with external memories. Our framework learns a network that maps a small labelled support set and an unlabelled example to its label, obviating the need for fine-tuning to adapt to new class types. We then define one-shot learning problems on vision (using Omniglot, ImageNet) and language tasks. Our algorithm improves one-shot accuracy on ImageNet from 87.6% to 93.2% and from 88.0% to 93.8% on Omniglot compared to competing approaches. We also demonstrate the usefulness of the same model on language modeling by introducing a one-shot task on the Penn Treebank.

0
8
下载
预览
小贴士
相关论文
Adversarial Representation Learning for Text-to-Image Matching
Nikolaos Sarafianos,Xiang Xu,Ioannis A. Kakadiaris
6+阅读 · 2019年8月28日
Jiazhan Feng,Chongyang Tao,Wei Wu,Yansong Feng,Dongyan Zhao,Rui Yan
4+阅读 · 2019年6月11日
Kun Xu,Liwei Wang,Mo Yu,Yansong Feng,Yan Song,Zhiguo Wang,Dong Yu
13+阅读 · 2019年5月28日
Qiuchi Li,Benyou Wang,Massimo Melucci
3+阅读 · 2019年4月10日
Paraphrase Generation with Deep Reinforcement Learning
Zichao Li,Xin Jiang,Lifeng Shang,Hang Li
3+阅读 · 2018年8月23日
Sounak Dey,Anjan Dutta,Suman K. Ghosh,Ernest Valveny,Josep Lladós,Umapada Pal
5+阅读 · 2018年4月28日
Kuang-Huei Lee,Xi Chen,Gang Hua,Houdong Hu,Xiaodong He
3+阅读 · 2018年3月21日
Tom Young,Devamanyu Hazarika,Soujanya Poria,Erik Cambria
7+阅读 · 2018年2月20日
Wentong Liao,Michael Ying Yang,Ni Zhan,Bodo Rosenhahn
3+阅读 · 2018年2月9日
Oriol Vinyals,Charles Blundell,Timothy Lillicrap,Koray Kavukcuoglu,Daan Wierstra
8+阅读 · 2017年12月29日
相关资讯
重磅发布:基于 PyTorch 的深度文本匹配工具 MatchZoo-py
中国科学院网络数据重点实验室
14+阅读 · 2019年8月26日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
11+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
26+阅读 · 2019年1月3日
深度文本匹配开源工具(MatchZoo)
中国科学院网络数据重点实验室
5+阅读 · 2017年12月5日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
5+阅读 · 2017年8月23日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top