【论文推荐】最新七篇推荐系统相关论文—影响兴趣、知识Embeddings、 音乐推荐、非结构化、一致性、显式和隐式特征、知识图谱

2018 年 3 月 28 日 专知 专知内容组
【论文推荐】最新七篇推荐系统相关论文—影响兴趣、知识Embeddings、 音乐推荐、非结构化、一致性、显式和隐式特征、知识图谱

【导读】专知内容组整理了最近七篇推荐系统Recommender System相关文章,为大家进行介绍,欢迎查看!


1.Learning Recommendations While Influencing Interests(在影响兴趣的同时学习推荐)




作者Rahul Meshram,D. Manjunath,Nikhil Karamchandani

摘要Personalized recommendation systems (RS) are extensively used in many services. Many of these are based on learning algorithms where the RS uses the recommendation history and the user response to learn an optimal strategy. Further, these algorithms are based on the assumption that the user interests are rigid. Specifically, they do not account for the effect of learning strategy on the evolution of the user interests. In this paper we develop influence models for a learning algorithm that is used to optimally recommend websites to web users. We adapt the model of \cite{Ioannidis10} to include an item-dependent reward to the RS from the suggestions that are accepted by the user. For this we first develop a static optimisation scheme when all the parameters are known. Next we develop a stochastic approximation based learning scheme for the RS to learn the optimal strategy when the user profiles are not known. Finally, we describe several user-influence models for the learning algorithm and analyze their effect on the steady user interests and on the steady state optimal strategy as compared to that when the users are not influenced.

期刊:arXiv, 2018年3月23日

网址

http://www.zhuanzhi.ai/document/513db2a850d4db1d1ce478b1ffd40353


2.Learning over Knowledge-Base Embeddings for Recommendation(在基于知识embeddings的基础上学习推荐)




作者Yongfeng Zhang,Qingyao Ai,Xu Chen,Pengfei Wang

机构:Tsinghua University,Beijing University of Posts and Telecommunications

摘要State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely neglected recently due to the availability of vast amount of data, and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors. A great challenge for using knowledge bases for recommendation is how to integrated large-scale structured and unstructured data, while taking advantage of collaborative filtering for highly accurate performance. Recent achievements on knowledge base embedding sheds light on this problem, which makes it possible to learn user and item representations while preserving the structure of their relationship with external knowledge. In this work, we propose to reason over knowledge base embeddings for personalized recommendation. Specifically, we propose a knowledge base representation learning approach to embed heterogeneous entities for recommendation. Experimental results on real-world dataset verified the superior performance of our approach compared with state-of-the-art baselines.

期刊:arXiv, 2018年3月23日

网址

http://www.zhuanzhi.ai/document/4a7f93d4541c08412376c92c7ac72f98


3.Current Challenges and Visions in Music Recommender Systems Research(音乐推荐系统研究中的当前挑战与展望)




作者Markus Schedl,Hamed Zamani,Ching-Wei Chen,Yashar Deldjoo,Mehdi Elahi

机构:Johannes Kepler University,University of MassachuseŠs

摘要Music recommender systems (MRS) have experienced a boom in recent years, thanks to the emergence and success of online streaming services, which nowadays make available almost all music in the world at the user's fingertip. While today's MRS considerably help users to find interesting music in these huge catalogs, MRS research is still facing substantial challenges. In particular when it comes to build, incorporate, and evaluate recommendation strategies that integrate information beyond simple user--item interactions or content-based descriptors, but dig deep into the very essence of listener needs, preferences, and intentions, MRS research becomes a big endeavor and related publications quite sparse. The purpose of this trends and survey article is twofold. We first identify and shed light on what we believe are the most pressing challenges MRS research is facing, from both academic and industry perspectives. We review the state of the art towards solving these challenges and discuss its limitations. Second, we detail possible future directions and visions we contemplate for the further evolution of the field. The article should therefore serve two purposes: giving the interested reader an overview of current challenges in MRS research and providing guidance for young researchers by identifying interesting, yet under-researched, directions in the field.

期刊:arXiv, 2018年3月22日

网址

http://www.zhuanzhi.ai/document/040f1775628bf7d35d98d8b04c817161


4.Product Characterisation towards Personalisation: Learning Attributes from Unstructured Data to Recommend Fashion Products(个性化的产品特性:从非结构化数据中学习属性来推荐时尚产品)




作者Ângelo Cardoso,Fabio Daolio,Saúl Vargas

机构:Universidade de Lisboa

摘要In this paper, we describe a solution to tackle a common set of challenges in e-commerce, which arise from the fact that new products are continually being added to the catalogue. The challenges involve properly personalising the customer experience, forecasting demand and planning the product range. We argue that the foundational piece to solve all of these problems is having consistent and detailed information about each product, information that is rarely available or consistent given the multitude of suppliers and types of products. We describe in detail the architecture and methodology implemented at ASOS, one of the world's largest fashion e-commerce retailers, to tackle this problem. We then show how this quantitative understanding of the products can be leveraged to improve recommendations in a hybrid recommender system approach.

期刊:arXiv, 2018年3月21日

网址

http://www.zhuanzhi.ai/document/e187e84da06667f00a4cefcde5667d32


5.Similar but Different: Exploiting Users' Congruity for Recommendation Systems(类似但不同:利用用户对推荐系统的一致性)




作者Ghazaleh Beigi,Huan Liu

机构:Arizona State University

摘要The pervasive use of social media provides massive data about individuals' online social activities and their social relations. The building block of most existing recommendation systems is the similarity between users with social relations, i.e., friends. While friendship ensures some homophily, the similarity of a user with her friends can vary as the number of friends increases. Research from sociology suggests that friends are more similar than strangers, but friends can have different interests. Exogenous information such as comments and ratings may help discern different degrees of agreement (i.e., congruity) among similar users. In this paper, we investigate if users' congruity can be incorporated into recommendation systems to improve it's performance. Experimental results demonstrate the effectiveness of embedding congruity related information into recommendation systems.

期刊:arXiv, 2018年3月16日

网址

http://www.zhuanzhi.ai/document/c79c87c517160b413d44dd40805ba0c9


6.xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender SystemsxDeepFM: 结合显式和隐式特征交互的推荐系统)




作者Jianxun Lian,Xiaohuan Zhou,Fuzheng Zhang,Zhongxia Chen,Xing Xie,Guangzhong Sun

机构:University of Science and Technology,Beijing University of Posts and Telecommunications

摘要Combinatorial features are essential for the success of many commercial models. Manually crafting these features usually comes with high cost due to the variety, volume and velocity of raw data in web-scale systems. Factorization based models, which measure interactions in terms of vector product, can learn patterns of combinatorial features automatically and generalize to unseen features as well. With the great success of deep neural works (DNNs) in various fields, recently researchers have proposed several DNN-based factorization model to learn both low- and high-order feature interactions. Despite the powerful ability of learning an arbitrary function from data, plain DNNs generate feature interactions implicitly and at the bit-wise level. In this paper, we propose a novel Compressed Interaction Network (CIN), which aims to generate feature interactions in an explicit fashion and at the vector-wise level. We show that the CIN share some functionalities with convolutional neural networks (CNNs) and recurrent neural networks (RNNs). We further combine a CIN and a classical DNN into one unified model, and named this new model eXtreme Deep Factorization Machine (xDeepFM). On one hand, the xDeepFM is able to learn certain bounded-degree feature interactions explicitly; on the other hand, it can learn arbitrary low- and high-order feature interactions implicitly. We conduct comprehensive experiments on three real-world datasets. Our results demonstrate that xDeepFM outperforms state-of-the-art models. We have released the source code of xDeepFM at https://github.com/Leavingseason/xDeepFM.

期刊:arXiv, 2018年3月15日

网址

http://www.zhuanzhi.ai/document/771b19587b0b9da76ce1e836d06e59b6


7.Ripple Network: Propagating User Preferences on the Knowledge Graph for Recommender Systems(波纹网络:在推荐系统的知识图上传播用户偏好)




作者Hongwei Wang,Fuzheng Zhang,Jialin Wang,Miao Zhao,Wenjie Li,Xing Xie,Minyi Guo

机构:Shanghai Jiao Tong University,The Hong Kong Polytechnic University

摘要To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

期刊:arXiv, 2018年3月9日

网址

http://www.zhuanzhi.ai/document/ec777791a9d080123eb5e32299007615

-END-

专 · 知

人工智能领域主题知识资料查看获取【专知荟萃】人工智能领域26个主题知识资料全集(入门/进阶/论文/综述/视频/专家等)

同时欢迎各位用户进行专知投稿,详情请点击

诚邀】专知诚挚邀请各位专业者加入AI创作者计划了解使用专知!

请PC登录www.zhuanzhi.ai或者点击阅读原文,注册登录专知,获取更多AI知识资料

请扫一扫如下二维码关注我们的公众号,获取人工智能的专业知识!

请加专知小助手微信(Rancho_Fang),加入专知主题人工智能群交流加入专知主题群(请备注主题类型:AI、NLP、CV、 KG等)交流~

点击“阅读原文”,使用专知!

登录查看更多
14

相关内容

推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

元学习的研究越来越受到学者们的重视,从最初在图像领域的研究逐渐拓展到其他领域,目前推荐系统领域也出现了相关的研究问题,本文介绍了5篇基于元学习的推荐系统相关论文,包括用户冷启动推荐、项目冷启动推荐等。

  1. MeLU: Meta-Learned User Preference Estimator for Cold-Start Recommendation

本文提出了一种新的推荐系统,解决了基于少量样本物品来估计用户偏好的冷启动问题。为了确定用户在冷启动状态下的偏好,现有的推荐系统,如Netflix,在启动初向用户提供物品选择,我们称这些物品为候选集。然后根据用户选择的物品做出推荐。以往的推荐研究有两个局限性:(1) 只有少量物品交互行为的用户推荐效果不佳,(2) 候选集合不足,无法识别用户偏好。为了克服这两个限制,我们提出了一种基于元学习的推荐系统MeLU。从元学习中,MeLU可以通过几个例子快速地应用于新任务,通过几个消费物品来估计新用户的偏好。此外,我们提供了一个候选集合选择策略,以确定自定义偏好估计的区分项目。我们用两个基准数据集对MeLU进行了验证,与两个对比模型相比,该模型的平均绝对误差至少降低了5.92%。我们还进行了用户研究实验来验证选择策略的有效性。

  1. Meta-Learning for User Cold-Start Recommendation 冷启动问题是对实际推荐系统的长期挑战。大多数现有的推荐算法依赖于大量的观测数据,对于很少交互的推荐场景来说是脆弱的。本文用少样本学习和元学习来解决这些问题。我们的方法是基于这样一种见解,即从几个例子中有一个很好的泛化,依赖于一个通用的模型初始化和一个有效的策略来使这个模型适应新出现的任务。为了实现这一点,我们将场景指定的学习与模型无关的序列元学习结合起来,并将它们统一到一个集成的端到端框架中,即场景指定的序列元学习者(或s^2 Meta)。我们的元学习器通过聚合来自各种预测任务的上下文信息来生成一个通用的初始模型,同时通过利用学习到的知识来有效地适应特定的任务。在各种现实世界数据集上的实验表明,我们提出的模型可以在在线推荐任务中获得对冷启动问题的最好效果。

  2. Sequential Scenario-Specific Meta Learner for Online Recommendation

冷启动问题是对实际推荐系统的长期挑战。大多数现有的推荐算法依赖于大量的观测数据,对于很少交互的推荐场景来说是脆弱的。本文用少样本学习和元学习来解决这些问题。我们的方法是基于这样一种见解,即从几个例子中有一个很好的泛化,依赖于一个通用的模型初始化和一个有效的策略来使这个模型适应新出现的任务。为了实现这一点,我们将场景指定的学习与模型无关的序列元学习结合起来,并将它们统一到一个集成的端到端框架中,即场景指定的序列元学习者(或s^2 Meta)。我们的元学习器通过聚合来自各种预测任务的上下文信息来生成一个通用的初始模型,同时通过利用学习到的知识来有效地适应特定的任务。在各种现实世界数据集上的实验表明,我们提出的模型可以在在线推荐任务中获得对冷启动问题的最好效果。

  1. A Meta-Learning Perspective on Cold-Start Recommendations for Items 矩阵分解(M F)是最流行的项目(item)推荐技术之一,但目前存在严重的冷启动问题。项目冷启动问题在一些持续输出项目的平台中显得特别尖锐(比如Tweet推荐)。在本文中,我们提出了一种元学习策略,以解决新项目不断产生时的项目冷启动问题。我们提出了两种深度神经网络体系结构,实现了我们的元学习策略。第一个体系结构学习线性分类器,其权重由项目历史决定,而第二个体系结构学习一个神经网络。我们评估了我们在Tweet推荐的现实问题上的效果,实验证明了我们提出的算法大大超过了MF基线方法。

  2. One-at-a-time: A Meta-Learning Recommender-System for Recommendation-Algorithm Selection on Micro Level

推荐算法的有效性通常用评价指标来评估,如均方根误差、F1或点击率CTR,在整个数据集上计算。最好的算法通常是基于这些总体度量来选择的,然而,对于所有用户、项目和上下文来说并没有一个单独的最佳算法。因此,基于总体评价结果选择单一算法并不是最优的。在本文中,我们提出了一种基于元学习的推荐方法,其目的是为每个用户-项目对选择最佳算法。我们使用MovieLens 100K和1m数据集来评估我们的方法。我们的方法(RMSE,100K:0.973;1M:0.908)没有优于单个的最佳算法SVD++(RMSE,100k:0.942;1M:0.887)。我们还探索了元学习者之间的区别,他们在每个实例(微级别),每个数据子集(中级)和每个数据集(全局级别)上进行操作。评估表明,与使用的总体最佳算法相比,一个假设完美的微级元学习器将提高RMSE 25.5%。

成为VIP会员查看完整内容
0
51

Personalized recommendation systems (RS) are extensively used in many services. Many of these are based on learning algorithms where the RS uses the recommendation history and the user response to learn an optimal strategy. Further, these algorithms are based on the assumption that the user interests are rigid. Specifically, they do not account for the effect of learning strategy on the evolution of the user interests. In this paper we develop influence models for a learning algorithm that is used to optimally recommend websites to web users. We adapt the model of \cite{Ioannidis10} to include an item-dependent reward to the RS from the suggestions that are accepted by the user. For this we first develop a static optimisation scheme when all the parameters are known. Next we develop a stochastic approximation based learning scheme for the RS to learn the optimal strategy when the user profiles are not known. Finally, we describe several user-influence models for the learning algorithm and analyze their effect on the steady user interests and on the steady state optimal strategy as compared to that when the users are not influenced.

0
9
下载
预览
小贴士
相关资讯
LibRec 精选:近期15篇推荐系统论文
LibRec智能推荐
5+阅读 · 2019年3月5日
相关论文
Xiang Wang,Xiangnan He,Meng Wang,Fuli Feng,Tat-Seng Chua
7+阅读 · 2019年5月20日
Stephen Bonner,Flavian Vasile
17+阅读 · 2018年8月3日
Maartje ter Hoeve,Anne Schuth,Daan Odijk,Maarten de Rijke
5+阅读 · 2018年5月14日
Qingyao Ai,Vahid Azizi,Xu Chen,Yongfeng Zhang
9+阅读 · 2018年5月9日
Tran Dang Quang Vinh,Tuan-Anh Nguyen Pham,Gao Cong,Xiao-Li Li
11+阅读 · 2018年4月18日
Rahul Meshram,D. Manjunath,Nikhil Karamchandani
9+阅读 · 2018年3月23日
Yongfeng Zhang,Qingyao Ai,Xu Chen,Pengfei Wang
21+阅读 · 2018年3月22日
Xu Chen,Yongfeng Zhang,Hongteng Xu,Yixin Cao,Zheng Qin,Hongyuan Zha
7+阅读 · 2018年1月31日
Sungwoon Choi,Heonseok Ha,Uiwon Hwang,Chanju Kim,Jung-Woo Ha,Sungroh Yoon
4+阅读 · 2018年1月17日
Xiangyu Zhao,Liang Zhang,Zhuoye Ding,Dawei Yin,Yihong Zhao,Jiliang Tang
12+阅读 · 2018年1月5日
Top