谷歌重磅:可以优化自己的优化器!手动调参或将成为历史!?

2020 年 10 月 27 日 AINLP

文 | 小轶

编 | 夕小瑶


背景

Google Brain团队发布的一篇最新论文在外网引发热议,或将成为Deep Learning发展历程上里程碑式的工作。它所讨论的,是所有AI行业者都要面对的——Deep Learning中的优化问题。也就是,如何更好地训练一个模型

深度模型的训练过程是非常困难的,常见的挑战包括:陷入局部极小值、梯度消失/爆炸、长期依赖(long dependency)等等。但对于大多数算法工程师来说其实并没有这么复杂。因为学术界早已陆续提出了许多卓有成效的优化器,比如AdaGrad、Adam、Momentum等等,都可以一定程度解决上述种种问题。而算法工程师搭完模型后,需要做的只有一件事——调参 :)

如果说深度学习的兴起为算法工程师省去了繁琐的特征工程(特征设计与特征选择),今天介绍的Google这篇工作就是致力于为大家省去繁琐的“调参工程”(优化器设计与优化器选择)。

深度学习用大量的训练数据替代了特征工程,同样的道理,这篇工作致力于用大量训练任务和模型来替代人工设计的优化器(Adam、Momentum等),这种以任务和模型为食的general-purpose的优化器模型,就称之为learned optimizer,可广泛适用于各类任务,无需手动调节优化器参数(如学习率,batch size...)。

实验不仅证明了learned optimizer的普适性,更是发现了这种优化器的一些惊人特性。比如,它甚至可以根据训练过程中的validation loss,隐性地做到正则化规约。最令人惊叹的是,该优化器甚至可以用来从头训练一个新的general-pupose优化器——也就是说,这是一个可以自己优化自己的优化器!

论文题目
《Tasks, stability, architecture, and compute: Training more effective learned optimizers, and using them to train themselves》

论文链接:
https://arxiv.org/pdf/2009.11243.pdf

Arxiv访问慢的小伙伴也可以在 【夕小瑶的卖萌屋】订阅号后台回复关键词 【1020】 下载论文PDF~

方法

接下来,我们就来看看这个神仙优化器是如何训出来的。在探讨其具体模型结构之前,我们先来理清楚优化器训练所需要的是什么样的数据集,以及目标函数是什么。

优化器训练的数据集

learned optimizer(下文简称 )的训练所需要的每个训练样本x都是一个需要在某任务上训练的深度学习模型,样本的标签y则是该模型在其对应任务上的开发集loss,即训练集为:

对于数据集里的每个训练样本 (模型),都

  • 可以采用不同的模型结构
  • 用于完成不同的任务,称为 inner-task
  • 有属于自己的数据集,称为 inner-dataset

比如,

  • 可能是一个用于文本分类的RNN,用的inner-dataset是YELP-5
  • 可能是一个做图像分类的CNN,用的inner-dataset是数据集CIFAR-10

作者实际共设置了 6000 个不同种类的模型。涵盖了RNNs、CNNs、mask auto regressive flows、全连接网络、语言模型、VAE、simple 2D test function、quadratic bowls等...

优化器训练的目标函数

我们都知道,通常一个深度学习模型的训练就需要极大的算力支撑。而此处令人咋舌的是,按照上述设定,我们需要完成6000个模型的训练才能为learned optimizer( )完成1轮训练

的一轮训练过程大致如下图所示(为说明得更加清楚,图中采用的是full batch进行参数更新,也就是每个batch直接包含全部样本):

  1. 先用 训练n个 (理想情况下,每个 应该一直训练到收敛,但考虑到算力的问题,实际上训练240~360个step就停止了)
  2. 每个 都有自己的inner-dataset,我们在它的inner-dataset的验证集上计算 的损失函数
  3. 的损失函数即为 所有 的平均
  4. 的损失函数对其进行参数更新

优化器的结构

其实learned optimizer的概念并不是在这篇论文中首次提出来的,不过论文作者argue了learned optimizer的结构和优化器训练所基于的任务集都会非常非常影响最终learned optimizer的表现。因此本文提出了一种层级的优化器结构,实验表明优于前人提出的learned optimizer结构。

设计learned optimizer结构的关键是平衡计算效率和表达能力

ps:预训练时代的军备竞赛可以疯狂追求模型表达能力,不顾及计算效率(想想BERT和Google T5放出时的恐惧)。但是优化器模型就不能这么任性了,TPU也耗不起

因此,优化器结构一般都不会太复杂,如下图所示

上图的优化器结构是ICML2019上提出的,使用了一个全连接网络(Feed-Forward,FF)。当模型完成了一个step的训练后,就用这个FF对每个参数进行更新。FF的输入端是模型某个参数 的梯度,以及该参数的其他feature(如Momentum等)。FF的输出端是w的更新值 ,则该参数将被更新为 。注意,这个FF每跑一次,只完成了一个参数的更新

上图就是paper中提出的优化器结构了。下半部分的FF与上面ICML2019的优化器实现类似,都是用于求某个参数的更新值,称为Per-parameter FF。与之前不同的是,这个FF还会接收到全局信息(如train/valid loss),以及该参数所在张量的信息(如张量形状,gradient norm等)。相关信息来自于上方的LSTM。文中称其为Per-tensor LSTM

实验

与常见优化器的比较

下图展示了与常见优化器(AdamLR、Adam8p、opt_list)的比较结果。实验中,总共测试了100个任务下使用learned optimizer后的性能提升比例。在各个任务上提升比例分布用箱图表示。

纵轴代表了不同设置下的三个basline优化器。最上面3个Global XXX的设定是:该baseline优化器对于所有任务都采用相同的超参数。而下面6个Per Task XXX对不同任务可以采用不同超参数,括号中的XXX Trial代表尝试调参的轮数。每一种baseline,都对应了两条同色系的箱图。这是因为用于测试的100个测试任务中,有一部分是learned optimer训练过程中见过的,有一部分从未见过。同色系的两个箱图中,上面那条代表在见过的那些任务上的提升效果,另一条代表在从未见过的那部分任务上的提升效果。

图中箱图的分布并不十分集中,可见提升效果对于不同的任务也各不相同。但总体来说,与适度调参的baseline相比,都有一定程度的提升效果。

隐性的正则化惩罚项

在机器学习中,时常会在目标函数中加入正则化惩罚项,从而对模型的复杂度进行规约。下图展示了Adam和learned optimizer在优化目标函数 时的收敛轨迹。显然直线 上目标函数最小。但可以看到Adam会直接垂直地收敛到 上。而learned optimizer在收敛过程中还会有逐渐接近原点的趋势。作者认为这是由于接近原点处的(x,y)范数较小,表明learned optimizer有隐式地进行正则化规约。

可以优化自己的优化器

最后,Google Brain团队脑洞大开地用这个learned optimizer再从头训练一个新的自己!作为比较的是,作者在训练它的时候使用的两种优化器设置(图中橙色和绿色曲线)。可以看到learned optimizer取得了非常相近的训练曲线。作者认为,这个实验进一步证明了该优化器的超强普适性。因为,对优化器进行优化是一个全新的任务,与这个优化器训练过程中见过的所有任务都完全不同。

小结

一个可以不用调参、适用于所有训练任务的优化器。如此的脑洞大开、又敢想敢做,不知道除了Google还有哪里可以。

萌屋作者:小轶

刚刚本科毕业于北大计算机系的美少女学霸!目前在腾讯天衍实验室做NLP研究实习生。原计划是要赴美国就读CMU的王牌硕士项目MCDS,不过因为疫情正处于gap year,于是就来和小夕愉快地玩耍啦~文风温柔优雅,偶尔暴露呆萌属性,文如其人哦!知乎ID:小轶。

作品推荐:

1.有钱可以多任性?OpenAI提出人肉模型训练,文本摘要全面超越人类表现!

2.ACL20 Best Paper揭晓!NLP模型评价体系或将迎来重大转折

3.Attention模型:我的注意力跟你们人类不一样

由于微信平台算法改版,公号内容将不再以时间排序展示,如果大家想第一时间看到我们的推送,强烈建议星标我们和给我们多点点【在看】。星标具体步骤为:

(1)点击页面最上方"AINLP",进入公众号主页。

(2)点击右上角的小点点,在弹出页面点击“设为星标”,就可以啦。

感谢支持,比心

欢迎加入AINLP技术交流群
进群请添加AINLP小助手微信 AINLPer(id: ainlper),备注NLP技术交流

推荐阅读

这个NLP工具,玩得根本停不下来

征稿启示| 200元稿费+5000DBC(价值20个小时GPU算力)

完结撒花!李宏毅老师深度学习与人类语言处理课程视频及课件(附下载)

从数据到模型,你可能需要1篇详实的pytorch踩坑指南

如何让Bert在finetune小数据集时更“稳”一点

模型压缩实践系列之——bert-of-theseus,一个非常亲民的bert压缩方法

文本自动摘要任务的“不完全”心得总结番外篇——submodular函数优化

Node2Vec 论文+代码笔记

模型压缩实践收尾篇——模型蒸馏以及其他一些技巧实践小结

中文命名实体识别工具(NER)哪家强?

学自然语言处理,其实更应该学好英语

斯坦福大学NLP组Python深度学习自然语言处理工具Stanza试用

关于AINLP

AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLPer(id:ainlper),备注工作/研究方向+加群目的。


阅读至此了,分享、点赞、在看三选一吧🙏

登录查看更多
0

相关内容

LinkedIn《贝叶斯优化推荐系统》,IJCAI报告,142页ppt
专知会员服务
51+阅读 · 2021年1月11日
最新《图嵌入组合优化》综述论文,40页pdf
专知会员服务
33+阅读 · 2020年9月7日
专知会员服务
15+阅读 · 2020年7月27日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
126+阅读 · 2020年3月15日
【模型泛化教程】标签平滑与Keras, TensorFlow,和深度学习
专知会员服务
20+阅读 · 2019年12月31日
谷歌机器学习速成课程中文版pdf
专知会员服务
143+阅读 · 2019年12月4日
深度学习网络调参技巧
AINLP
14+阅读 · 2019年11月15日
PyTorch 学习笔记(七):PyTorch的十个优化器
极市平台
8+阅读 · 2019年5月19日
介绍高维超参数调整 - 优化ML模型的最佳实践
AI研习社
7+阅读 · 2019年4月17日
Google:数据并行对神经网络训练用时的影响
谷歌最强 NLP 模型 BERT 解读
雷锋网
7+阅读 · 2018年10月23日
深度学习如何调参?
炼数成金订阅号
6+阅读 · 2018年10月18日
神经网络架构搜索(NAS)综述 | 附AutoML资料推荐
深度学习面试100题(第31-35题)
七月在线实验室
8+阅读 · 2018年7月16日
Adam那么棒,为什么还对SGD念念不忘
人工智能头条
6+阅读 · 2018年3月25日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关VIP内容
LinkedIn《贝叶斯优化推荐系统》,IJCAI报告,142页ppt
专知会员服务
51+阅读 · 2021年1月11日
最新《图嵌入组合优化》综述论文,40页pdf
专知会员服务
33+阅读 · 2020年9月7日
专知会员服务
15+阅读 · 2020年7月27日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
126+阅读 · 2020年3月15日
【模型泛化教程】标签平滑与Keras, TensorFlow,和深度学习
专知会员服务
20+阅读 · 2019年12月31日
谷歌机器学习速成课程中文版pdf
专知会员服务
143+阅读 · 2019年12月4日
相关资讯
深度学习网络调参技巧
AINLP
14+阅读 · 2019年11月15日
PyTorch 学习笔记(七):PyTorch的十个优化器
极市平台
8+阅读 · 2019年5月19日
介绍高维超参数调整 - 优化ML模型的最佳实践
AI研习社
7+阅读 · 2019年4月17日
Google:数据并行对神经网络训练用时的影响
谷歌最强 NLP 模型 BERT 解读
雷锋网
7+阅读 · 2018年10月23日
深度学习如何调参?
炼数成金订阅号
6+阅读 · 2018年10月18日
神经网络架构搜索(NAS)综述 | 附AutoML资料推荐
深度学习面试100题(第31-35题)
七月在线实验室
8+阅读 · 2018年7月16日
Adam那么棒,为什么还对SGD念念不忘
人工智能头条
6+阅读 · 2018年3月25日
Top
微信扫码咨询专知VIP会员