书名: Hands-On Machine Learning with Scikit-Learn and TensorFlow

主要内容:

这本书分为两个部分。

第一部分,机器学习的基础知识,涵盖以下主题:

  • 什么是机器学习?它被试图用来解决什么问题?机器学习系统的主要类别和基本概念是什么?
  • 典型的机器学习项目中的主要步骤。
  • 通过拟合数据来学习模型。
  • 优化成本函数(cost function)。
  • 零、前言
  • 处理,清洗和准备数据。
  • 选择和设计特征。
  • 使用交叉验证选择一个模型并调整超参数。
  • 机器学习的主要挑战,特别是欠拟合和过拟合(偏差和方差权衡)。
  • 对训练数据进行降维以对抗 the curse of dimensionality(维度诅咒)
  • 最常见的学习算法:线性和多项式回归, Logistic 回归,k-最近邻,支持向量机,决策 树,随机森林和集成方法。

第二部分,神经网络和深度学习,包括以下主题:

  • 什么是神经网络?它们有啥优势?
  • 使用 TensorFlow 构建和训练神经网络。
  • 最重要的神经网络架构:前馈神经网络,卷积网络,递归网络,长期短期记忆网络 (LSTM)和自动编码器。
  • 训练深度神经网络的技巧。
  • 对于大数据集缩放神经网络。
  • 强化学习。

第一部分主要基于 scikit-learn ,而第二部分则使用 TensorFlow 。 注意:不要太急于深入学习到核心知识:深度学习无疑是机器学习中最令人兴奋的领域之 一,但是你应该首先掌握基础知识。而且,大多数问题可以用较简单的技术很好地解决(而 不需要深度学习),比如随机森林和集成方法(我们会在第一部分进行讨论)。如果你拥有 足够的数据,计算能力和耐心,深度学习是最适合复杂的问题的,如图像识别,语音识别或 自然语言处理。

成为VIP会员查看完整内容
Hands on Machine Learning with Scikit Learn and TensorFlow - 中文版.pdf
0
49

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

有兴趣的数据科学专业人士可以通过本书学习Scikit-Learn图书馆以及机器学习的基本知识。本书结合了Anaconda Python发行版和流行的Scikit-Learn库,演示了广泛的有监督和无监督机器学习算法。通过用Python编写的清晰示例,您可以在家里自己的机器上试用和试验机器学习的原理。

所有的应用数学和编程技能需要掌握的内容,在这本书中涵盖。不需要深入的面向对象编程知识,因为工作和完整的例子被提供和解释。必要时,编码示例是深入和复杂的。它们也简洁、准确、完整,补充了介绍的机器学习概念。使用示例有助于建立必要的技能,以理解和应用复杂的机器学习算法。

对于那些在机器学习方面追求职业生涯的人来说,Scikit-Learn机器学习应用手册是一个很好的起点。学习这本书的学生将学习基本知识,这是胜任工作的先决条件。读者将接触到专门为数据科学专业人员设计的蟒蛇分布,并将在流行的Scikit-Learn库中构建技能,该库是Python世界中许多机器学习应用程序的基础。

你将学习

  • 使用Scikit-Learn中常见的简单和复杂数据集
  • 将数据操作为向量和矩阵,以进行算法处理
  • 熟悉数据科学中使用的蟒蛇分布
  • 应用带有分类器、回归器和降维的机器学习
  • 优化算法并为每个数据集找到最佳算法
  • 从CSV、JSON、Numpy和panda格式加载数据并保存为这些格式

这本书是给谁的

  • 有抱负的数据科学家渴望通过掌握底层的基础知识进入机器学习领域,而这些基础知识有时在急于提高生产力的过程中被忽略了。一些面向对象编程的知识和非常基本的线性代数应用将使学习更容易,尽管任何人都可以从这本书获益。
成为VIP会员查看完整内容
0
85

【导读】自2015年11月TensorFlow第一个开源版本发布以来,它便迅速跻身于最激动人心的机器学习库的行列,并在科研、产品和教育等领域正在得到日益广泛的应用。这个库也在不断地得到改进、充实和优化。今天给大家推荐一本偏实战的教程《Hands-On Machine Learning with Scikit-Learn and TensorFlow, 2nd Edition》第二版,使用最新TensorFlow 2的官方高级API,帮助你直观地理解构建智能系统的概念和工具。从业者将学习一系列可以在工作中快速使用的技术。第1部分使用Scikit-Learn来介绍基本的机器学习任务,例如简单的线性回归。第2部分已经过重大更新,采用Keras和TensorFlow 2.0引导读者通过使用深度神经网络的更先进的机器学习方法。通过每章的练习来帮助你应用所学知识,你只需要编程经验即可开始使用。

Hands-On Machine Learning with Scikit-Learn and TensorFlow, 2nd Edition

▌本书简介

通过近年来一系列的突破,深度学习推动了整个机器学习领域的发展。现在,即使对这种技术几乎一无所知的程序员也可以使用简单、高效的工具来实现能够从数据中学习的程序。这本畅销书的最新版本使用了具体的例子、最少理论和可复现的Python框架,帮助您直观地理解用于构建人工智能系统的概念和工具。

您将学习一系列可以快速使用的技术。每一章都有练习来帮助你应用所学,你所需要的只是编程经验。所有代码都已更新为TensorFlow 2和最新版本的Scikit-Learn和其他库。

  • 探索Keras API, TensorFlow 2的官方高级API
  • 使用TensorFlow的数据API、分发策略API和TensorFlow扩展平台(TFX)对TensorFlow模型进行产品化
  • 部署在Google Cloud ML引擎或移动设备上使用TFLite
  • 学习新的和扩展的主题,包括聚类、异常检测、对象检测、语义分割、注意力机制、语言模型、GANs等

▌相关代码

https://github.com/ageron/handson-ml2

参考链接: https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

成为VIP会员查看完整内容
0
126

机器学习已经成为许多商业应用和研究项目中不可或缺的一部分,但这一领域并不仅限于拥有广泛研究团队的大公司。如果您使用Python,即使是初学者,这本书也会教你构建自己的机器学习解决方案的实用方法。今天,有了所有可用的数据,机器学习应用程序只受限于你的想象力。

您将学习使用Python和scikit-learn库创建成功的机器学习应用程序所需的步骤。两位作者安德烈亚斯•穆勒(Andreas Muller)和萨拉•圭多(Sarah Guido)关注的是使用机器学习算法的实践层面,而不是背后的数学。熟悉NumPy和matplotlib库将有助于您从本书获得更多信息。

通过这本书,你会学到 :

  • 机器学习的基本概念和应用
  • 广泛应用的机器学习算法的优缺点
  • 如何表示机器学习处理过的数据,包括关注哪些数据方面
  • 先进的模型评估和参数调整方法
  • 用于链接模型和封装工作流的管道概念
  • 处理文本数据的方法,包括特定于文本的处理技术
  • 提高机器学习和数据科学技能的建议
成为VIP会员查看完整内容
0
61

获得在日常工作中应用机器学习所需的信心。通过本实用指南,作者Matthew Kirk向您展示了如何在您的代码中集成和测试机器学习算法,而没有学术潜台词。

全书以图形和突出显示的代码示例为特色,使用Python的Numpy、panda、Scikit-Learn和SciPy数据科学库进行测试。如果你是一个软件工程师或业务分析师,对数据科学感兴趣,这本书将帮助你:

  • 参考真实世界的例子来测试每一个算法,通过参与,动手练习
  • 在开始编码之前,应用测试驱动开发(TDD)来编写和运行测试
  • 探索使用数据提取和特性开发来改进您的机器学习模型的技术
  • 注意机器学习的风险,如数据拟合不足或过拟合
  • 使用k近邻、神经网络、集群和其他算法
成为VIP会员查看完整内容
0
43

本书通过提供真实的案例研究和示例,为使用Python库进行机器学习提供了坚实的基础。它涵盖了诸如机器学习基础、Python入门、描述性分析和预测分析等主题。包括高级机器学习概念,如决策树学习、随机森林、增强、推荐系统和文本分析。这本书在理论理解和实际应用之间采取了一种平衡的方法。所有的主题都包括真实世界的例子,并提供如何探索、构建、评估和优化机器学习模型的逐步方法。

成为VIP会员查看完整内容
Machine Learning using Python by Manaranjan Pradhan.pdf
0
148

题目: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition

书籍简介: 通过最近的一系列突破,深度学习促进了整个机器学习领域的发展。现在,即使对这项技术一无所知的程序员也可以使用简单、高效的工具来实现能够从数据中学习的程序。这本实用的书告诉你怎么做。通过使用具体的例子、最小理论和两个可用于生产的Python框架Scikit Learn和TensorFlow的作者Aurélien Géron帮助您直观地理解用于构建智能系统的概念和工具。您将学习一系列技术,从简单的线性回归开始,然后进入深层神经网络。每一章的练习都有助于你应用你所学的知识。

  • 探索机器学习领域,特别是神经网络

  • 使用Scikit Learn端到端跟踪示例机器学习项目

  • 探索几种训练模型,包括支持向量机、决策树、随机森林和集成方法

  • 利用TensorFlow库建立和训练神经网络

  • 深入研究神经网络结构,包括卷积网络、递归网络和深度强化学习

  • 学习深度神经网络的训练和缩放技术

作者简介: Aurélien Géron,Kiwisoft的机器学习顾问,也是畅销书《与Scikit-Learn、Keras和TensorFlow一起进行机器学习》的作者。此前,他曾领导YouTube的视频分类团队,是Wifirst的创始人和首席技术官,并在多个领域担任顾问:金融(摩根大楼和法国兴业银行)、国防(加拿大国防部)和医疗(输血)。他还出版了一些技术书籍(关于c++、WiFi和互联网架构),他是巴黎多芬大学的讲师。

成为VIP会员查看完整内容
0
121
小贴士
相关论文
Do RNN and LSTM have Long Memory?
Jingyu Zhao,Feiqing Huang,Jia Lv,Yanjie Duan,Zhen Qin,Guodong Li,Guangjian Tian
9+阅读 · 6月10日
Bernhard Schölkopf
8+阅读 · 2019年11月24日
Silvio Olivastri,Gurkirt Singh,Fabio Cuzzolin
5+阅读 · 2019年4月4日
Adaptive Neural Trees
Ryutaro Tanno,Kai Arulkumaran,Daniel C. Alexander,Antonio Criminisi,Aditya Nori
3+阅读 · 2018年12月10日
Image Captioning based on Deep Reinforcement Learning
Haichao Shi,Peng Li,Bo Wang,Zhenyu Wang
6+阅读 · 2018年9月13日
Thomas Elsken,Jan Hendrik Metzen,Frank Hutter
7+阅读 · 2018年9月5日
Ken C. L. Wong,Tanveer Syeda-Mahmood,Mehdi Moradi
4+阅读 · 2018年8月15日
Wei Xue,Tao Li
12+阅读 · 2018年5月18日
Christian Rupprecht,Iro Laina,Nassir Navab,Gregory D. Hager,Federico Tombari
4+阅读 · 2018年3月30日
Tom Young,Devamanyu Hazarika,Soujanya Poria,Erik Cambria
7+阅读 · 2018年2月20日
Top