项目名称: 表面及界面硫钝化在Si/SiC异质结功率器件中的应用

项目编号: No.51207128

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 电气科学与工程学科

项目作者: 杨莺

作者单位: 西安理工大学

项目金额: 27万元

中文摘要: 半导体器件制造过程中,钝化技术能有效减少表面态和界面态,是改善器件性能的关键技术之一。SiC器件在高频,高温,大功率等领域有非常重要的应用,因此针对此类器件的钝化技术研究对于提高SiC功率器件的性能意义重大。本申请项目基于Valence-Mending概念,提出对Si/SiC异质结功率器件表面以及界面进行硫钝化,最终达到改善器件光学和电学特性的目的。项目以现有半导体S钝化技术为基础,针对Si/SiC异质结功率器件研究S钝化技术的最佳工艺参数,包括溶液浓度,温度和钝化时间;H2S气体流量,衬底温度和钝化时间。研究S钝化后的热稳定性问题。通过对钝化前后界面态和表面态密度的分析,研究S钝化对界面态和表面态密度的影响。探索S钝化对器件电学和光学特性的影响。研究还包括通过第一性原理计算分析S钝化SiC表面和界面的机理,从理论上解释SiC的Si面和C面钝化稳定性问题,计算钝化对表面态和禁带结构的影响。

中文关键词: S钝化;SiC;肖特基;态密度;表面能

英文摘要: Passivation is one of the key techniques to eliminate the surface states and interface states which will improve the quality of semiconductor devices, during semiconductor devices manufacture processing. SiC power devices play a very important role in the field of high frequency, high temperature and high power applications. Passivation technique research for silicon carbide devices has a significant impact on incremental improving the device properties. This proposal seeks to develop a new sulfur passivation technique for the surface and interface of Si/SiC heterojunction power devices to improve its electronic and optical qualities. The idea is based on the Valence-Mending concept. According to the presented S passivation techniques, this project will include the following interlinked components. (1) Analyzing the concentration of passivation solutions, the passivation time and solution temperature;analyzing the gas flow rate of H2S, the substrate temperature and the passivation time to get the optimum passivation parameters. (2) Discussing the thermal stability of S passivation. (3) Exploring the effect of S passivation on surface states and interface states by comparison the states density before and after passivation.. (4) Exploring the effects of S passivation on electronic and optical qualities. (5) Analy

英文关键词: S passivation;SiC;Schottky;density of states;surface energy

成为VIP会员查看完整内容
0

相关内容

面向任务型的对话系统研究进展
专知会员服务
56+阅读 · 2021年11月17日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
59+阅读 · 2021年5月2日
知识图谱构建技术:分类、调查和未来方向
专知会员服务
107+阅读 · 2021年3月1日
专知会员服务
67+阅读 · 2020年11月30日
企业风险知识图谱的构建及应用
专知会员服务
94+阅读 · 2020年11月6日
你在网上抽奖中过什么电子产品吗?
ZEALER订阅号
0+阅读 · 2022年1月16日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
面向任务型的对话系统研究进展
专知
0+阅读 · 2021年11月17日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月7日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
面向任务型的对话系统研究进展
专知会员服务
56+阅读 · 2021年11月17日
专知会员服务
39+阅读 · 2021年9月7日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
59+阅读 · 2021年5月2日
知识图谱构建技术:分类、调查和未来方向
专知会员服务
107+阅读 · 2021年3月1日
专知会员服务
67+阅读 · 2020年11月30日
企业风险知识图谱的构建及应用
专知会员服务
94+阅读 · 2020年11月6日
相关资讯
你在网上抽奖中过什么电子产品吗?
ZEALER订阅号
0+阅读 · 2022年1月16日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
面向任务型的对话系统研究进展
专知
0+阅读 · 2021年11月17日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
32+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员