项目名称: InN材料电致发光机理的研究

项目编号: No.11304112

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 吴国光

作者单位: 吉林大学

项目金额: 30万元

中文摘要: 伴随InN材料物理特性研究进展,特别是0.7eV左右窄直接带隙的发现,使InN材料非常适合制备光纤通信领域中无污染、高性能的近红外发光管和激光器,很可能为光纤通信的发展带来突破。然而一直以来我们未见到InN材料的近红外电注入发光报道,目前我们首次实现了InN材料位于1573nm处的近红外电注入发光,得到国际同行的认可,受邀在2012年氮化物半导体国际会议上做邀请报告。然而目前对于InN材料物理特性的研究仍然不够透彻,如何实现InN材料更稳定高效的近红外电致发光仍然没有得到很好的解决。为此,我们将开展InN材料载流子输运行为及电注入发光机理的研究,并创新地提出采用极化诱导效应提高载流子的注入效率,使其主要在InN中复合发光,从而获得温度特性稳定的高亮度近红外电注入发光。该项目的开展,为InN系材料发光器件在光纤通信领域中的应用打下良好基础,具有重要科学意义。

中文关键词: 氮化铟;分子束外延;异质结;近红外;电致发光

英文摘要: The development of research on InN, especially the discovery of narrow direct band gap around 0.7 eV, has made it an ideal material to fabricate pollution-free, high-performance near-infrared (NIR) light emitting diode(LED) and laser diode(LD). These devices may bring a breakthrough in the field of fibre communication. However, we have rarely seen literatures about the electroluminescence of InN. At present, we successfully realize the 1573nm near-infrared electroluminescence of InN for the first time and our work has been recognized by international counterparts. In 2012, we were invited by International Workshop on Nitride Semiconductors to do invited talks. However, the research on physical property of InN material is not incisive enough, and there are still many obstacles must be overcome if we want to achieve NIR near-band luminescence with high stability and high efficiency. Under such circumstance, we plan to do research on the behavior of carrier transportation and the mechanism of electroluminescence in InN. We come up with the idea innovatively of using polarization to improve the injection efficiency of carriers which makes the recombination luminescence mainly in InN material. And this will achieve high brightness NIR electroluminescence with steady temperature dependence. This project is of great sc

英文关键词: InN;MBE;heterojunction;near-infrared;electroluminescence

成为VIP会员查看完整内容
0

相关内容

《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
【NeurIPS 2021】 基于置信度校正的可信图神经网络
专知会员服务
20+阅读 · 2021年12月26日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
52+阅读 · 2021年12月6日
2021年中国量子计算应用市场研究报告
专知会员服务
37+阅读 · 2021年10月28日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
19+阅读 · 2021年10月3日
专知会员服务
43+阅读 · 2021年5月24日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月16日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
10+阅读 · 2018年3月23日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员