项目名称: 无穷维动力系统中Bourgain猜测的证明及其应用

项目编号: No.11526189

项目类型: 专项基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 闫东风

作者单位: 郑州大学

项目金额: 3万元

中文摘要: 哈密顿偏微分方程广泛存在于流体力学及量子力学等领域中,对其拟周期解的研究一直是动力系统中的热点。众所周知,在研究哈密顿偏微分方程的拟周期解时,参数发挥着至关重要的作用。从需要最少参数的角度看,Bourgain及Eliasson研究有限维哈密顿系统中切频沿给定方向的不变环面的工作颇具价值,随后Bourgain猜测这一结果可以推广到无穷维哈密顿系统中。在有界扰动下,Bourgain猜测已被Berti证明。本课题致力于研究无界扰动下的无界扰动下无穷维系统中的Bourgain猜测。具体包括:(1)带无界扰动的无穷维哈密顿系统中最终切频沿给定方向的KAM定理;(2)将上述KAM定理应用到KdV方程、非线性项带导数的Schrodinger方程,分别得到它们切频沿给定方向的不变环面及相应的拟周期解;(3)将前两步的结果类推到无穷维反转系统中。本课题将为研究无穷维系统的动力学行为提供完善的理论支持。

中文关键词: 哈密顿偏微分方程;拟周期解;不变环面;KAM理论;KdV方程

英文摘要: Many kinds of Hamiltonian partial differential equations come from Fluid Dynamics and Quantum Mechanics, studying quasi-periodic solutions of these Hamiltonian partial differential equations has always been hot topics. As we know, parameters play an essential role in investigating the invariant torus of Hamiltonian partial differential equations. From this point of view, it was of great importance for Bourgain and Eliasson to study the existence of invariant torus with tangential frequency along the pre-assigned direction for the finite dimensional Hamiltonian systems, moreover, Bourgain made the conjecture that this conclusion was also valid for infinite dimensional Hamiltonian systems. Berti proved the Bourgain conjecture in 2010 under the bounded perturbation case. This research work plans to prove the Bourgain conjecture for the infinite dimensional dynamical systems. We specifically investigate (1) a KAM theorem for infinite dimensional Hamiltonian system containing unbounded perturbation with final tangential frequency along the pre-assigned direction,(2) we apply this KAM theorem into KdV equations、Schrodinger equations containing nonlinearities with derivatives,and derive the corresponding invariant tori as well as quasi-periodic solutions with tangential frequency along the fixed direction, (3)we gen

英文关键词: Hamiltonian partial differential equation;quasi-periodic solution;invariant torus;KAM theory;KdV equation

成为VIP会员查看完整内容
0

相关内容

【AAAI 2022】神经分段常时滞微分方程
专知会员服务
34+阅读 · 2022年1月14日
逆优化: 理论与应用
专知会员服务
37+阅读 · 2021年9月13日
专知会员服务
218+阅读 · 2021年8月2日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
专知会员服务
143+阅读 · 2020年12月3日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
64+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
74+阅读 · 2020年8月2日
【AAAI 2022】神经分段常时滞微分方程
专知
2+阅读 · 2022年1月14日
输入梯度惩罚与参数梯度惩罚的一个不等式
PaperWeekly
0+阅读 · 2021年12月27日
机器的猜想与边界
机器之心
0+阅读 · 2021年12月23日
DeepMind Nature发文:AI能提出和证明数学定理
学术头条
1+阅读 · 2021年12月2日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
42+阅读 · 2019年8月9日
GAN的数学原理
算法与数学之美
16+阅读 · 2017年9月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月20日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
14+阅读 · 2021年6月30日
小贴士
相关主题
相关VIP内容
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
34+阅读 · 2022年1月14日
逆优化: 理论与应用
专知会员服务
37+阅读 · 2021年9月13日
专知会员服务
218+阅读 · 2021年8月2日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
专知会员服务
143+阅读 · 2020年12月3日
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
64+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
74+阅读 · 2020年8月2日
相关资讯
【AAAI 2022】神经分段常时滞微分方程
专知
2+阅读 · 2022年1月14日
输入梯度惩罚与参数梯度惩罚的一个不等式
PaperWeekly
0+阅读 · 2021年12月27日
机器的猜想与边界
机器之心
0+阅读 · 2021年12月23日
DeepMind Nature发文:AI能提出和证明数学定理
学术头条
1+阅读 · 2021年12月2日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
42+阅读 · 2019年8月9日
GAN的数学原理
算法与数学之美
16+阅读 · 2017年9月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员