项目名称: Novikov代数的Groebner-Shirshov基理论及其应用
项目编号: No.11426112
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 李羽
作者单位: 惠州学院
项目金额: 3万元
中文摘要: Novikov代数是一类与李代数联系非常密切的代数,它是在研究哈密顿算子时产生的,并用来研究流体动力学有关问题。Novikov代数的定义在1985年由Balinskii和Novikov给出,是一类比较新的代数。代数学家们对它的研究远没有完成。Groebner-Shirshov基是研究代数系统的一种非常强大的数学工具,它主要用来解决以下的代数问题:字问题,共轭问题,嵌入问题,代数的扩张问题,商系统的normal form问题,求代数系统的Dehn函数,Hilbert级数,复杂度等等。本项目主要建立Novikov代数的Groebner-Shirshov基理论。尝试应用将要建立的Groebner-Shirshov基方法给出Novikov代数的一些嵌入定理。
中文关键词: Pre-李代数;Novikov代数;李代数;Groebner-Shirshov 基;
英文摘要: Novikov algebra is a kind of algebras which is closely connected with Lie algebra. It is generated by the study of Hamilton operators and applied to the research of Hydrodynamics. The definition of Novikov algebra, in 1985, was introduced by Balinskii and Novikov, and it is a relatively new class of algebras. The study on Novikov algebra is far from finishing. Groebner-Shirshov basis is a very powerful tool for studying algebras. It is often used to solve word problem, conjugacy problem, embedding problem, extension problem and normal form problem, to obtain Dehn function, Hilbert series and complexity of algebra. This project is mainly to establish Groebner-Shirshov bases theory for Novikov algebras. We will try to give embedding theorems for relevant algebras by applying the Groebner-Shirshov bases theory for Novikov algebras.
英文关键词: Pre-Lie algebra;Novikov algebra;Lie algebra;Groebner-Shirshov basis;