项目名称: 纳米结构聚吡咯的脉冲合成、结构调控和储能性能研究

项目编号: No.21274115

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 王杰

作者单位: 西安交通大学

项目金额: 82万元

中文摘要: 为缓解能源危机、环境污染和气候恶化,可再生能源的大规模应用势在必行,将高效储能材料研究提升到重要的战略高度,超级电容器的高性能绿色电极材料研制是一项有重大前景的核心支撑技术。导电聚合物各具优点,是一类潜在的电极材料,但具有难以获得兼具超快放电速率、高面积比容量和长寿命性能的缺陷。本项目拟通过电化学脉冲"无模板"法合成纳米结构的"羊角状"聚吡咯来攻克这一难题。将系统研究"羊角"纳米结构的形成机理和可控生长动力学,探索电化学脉冲合成对聚吡咯分子链结构的影响机制,研究纳米结构和分子链结构对聚吡咯储能性能的作用原理,建立充放电时电子/离子的传输模型,研究纳米结构电极的动态响应特性,揭示影响聚合物电极循环寿命的关键因素。本项目成果不仅能够充实纳米结构材料的合成、结构与性能的理论体系,而且可以为实现高能量密度、高功率密度和长寿命的超级电容器奠定基础,推动高效电能储存器件与系统的发展。

中文关键词: 聚吡咯;超级电容器;脉冲合成;纳米结构;

英文摘要: Extensively application of renewable energy is an inevitable choice due to energy crisis, pollution and global warming at present, which endows the research of highly effective energy storage materials with strategic importance. The development of green electrode materials with high performance for supercapacitors is one of key techniques with great perspective. Electronically conducting polymers (ECPs), a kind of potential electrode materials, have their own various advantages, however, it is difficult to compose ultra-fast charging/discharging ability, high specific capacitance and long cycling life in one. In this study, a pulse-depositing and template-free electrochemical method is applied to synthesize nanostructured "horn-like" polypyrrole (h-PPy) to address this issue. Systematical research will be carried out on the formation mechanism and controllable growth dynamics of this novel structure, the influence of pulse-deposition upon PPy molecular chain structure and their effect on energy storage performance. An electrons/ions transport model in charging/discharging process is to be built, and the dynamic response characteristics of nanostructured electrode are to be explored, and the key factors to cycling stability of polymer electrodes are to be revealed. The achievement can not only enrich the theories

英文关键词: Polypyrrole;Supercapacitors;Pulse;nano structure;

成为VIP会员查看完整内容
0

相关内容

全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
《利用人工智能加速能源转型》报告
专知会员服务
75+阅读 · 2022年2月23日
专知会员服务
54+阅读 · 2021年10月4日
专知会员服务
48+阅读 · 2021年10月3日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员