Dense video captioning aims to generate text descriptions for all events in an untrimmed video. This involves both detecting and describing events. Therefore, all previous methods on dense video captioning tackle this problem by building two models, i.e. an event proposal and a captioning model, for these two sub-problems. The models are either trained separately or in alternation. This prevents direct influence of the language description to the event proposal, which is important for generating accurate descriptions. To address this problem, we propose an end-to-end transformer model for dense video captioning. The encoder encodes the video into appropriate representations. The proposal decoder decodes from the encoding with different anchors to form video event proposals. The captioning decoder employs a masking network to restrict its attention to the proposal event over the encoding feature. This masking network converts the event proposal to a differentiable mask, which ensures the consistency between the proposal and captioning during training. In addition, our model employs a self-attention mechanism, which enables the use of efficient non-recurrent structure during encoding and leads to performance improvements. We demonstrate the effectiveness of this end-to-end model on ActivityNet Captions and YouCookII datasets, where we achieved 10.12 and 6.58 METEOR score, respectively.

13
下载
关闭预览

相关内容

视频描述生成(Video Caption),就是从视频中自动生成一段描述性文字

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

0
17
下载
预览

Contextual reasoning is essential to understand events in long untrimmed videos. In this work, we systematically explore different captioning models with various contexts for the dense-captioning events in video task, which aims to generate captions for different events in the untrimmed video. We propose five types of contexts as well as two categories of event captioning models, and evaluate their contributions for event captioning from both accuracy and diversity aspects. The proposed captioning models are plugged into our pipeline system for the dense video captioning challenge. The overall system achieves the state-of-the-art performance on the dense-captioning events in video task with 9.91 METEOR score on the challenge testing set.

0
3
下载
预览

It is well believed that video captioning is a fundamental but challenging task in both computer vision and artificial intelligence fields. The prevalent approach is to map an input video to a variable-length output sentence in a sequence to sequence manner via Recurrent Neural Network (RNN). Nevertheless, the training of RNN still suffers to some degree from vanishing/exploding gradient problem, making the optimization difficult. Moreover, the inherently recurrent dependency in RNN prevents parallelization within a sequence during training and therefore limits the computations. In this paper, we present a novel design --- Temporal Deformable Convolutional Encoder-Decoder Networks (dubbed as TDConvED) that fully employ convolutions in both encoder and decoder networks for video captioning. Technically, we exploit convolutional block structures that compute intermediate states of a fixed number of inputs and stack several blocks to capture long-term relationships. The structure in encoder is further equipped with temporal deformable convolution to enable free-form deformation of temporal sampling. Our model also capitalizes on temporal attention mechanism for sentence generation. Extensive experiments are conducted on both MSVD and MSR-VTT video captioning datasets, and superior results are reported when comparing to conventional RNN-based encoder-decoder techniques. More remarkably, TDConvED increases CIDEr-D performance from 58.8% to 67.2% on MSVD.

0
4
下载
预览

Dense video captioning is an extremely challenging task since accurate and coherent description of events in a video requires holistic understanding of video contents as well as contextual reasoning of individual events. Most existing approaches handle this problem by first detecting event proposals from a video and then captioning on a subset of the proposals. As a result, the generated sentences are prone to be redundant or inconsistent since they fail to consider temporal dependency between events. To tackle this challenge, we propose a novel dense video captioning framework, which models temporal dependency across events in a video explicitly and leverages visual and linguistic context from prior events for coherent storytelling. This objective is achieved by 1) integrating an event sequence generation network to select a sequence of event proposals adaptively, and 2) feeding the sequence of event proposals to our sequential video captioning network, which is trained by reinforcement learning with two-level rewards at both event and episode levels for better context modeling. The proposed technique achieves outstanding performances on ActivityNet Captions dataset in most metrics.

0
7
下载
预览

Building correspondences across different modalities, such as video and language, has recently become critical in many visual recognition applications, such as video captioning. Inspired by machine translation, recent models tackle this task using an encoder-decoder strategy. The (video) encoder is traditionally a Convolutional Neural Network (CNN), while the decoding (for language generation) is done using a Recurrent Neural Network (RNN). Current state-of-the-art methods, however, train encoder and decoder separately. CNNs are pretrained on object and/or action recognition tasks and used to encode video-level features. The decoder is then optimised on such static features to generate the video's description. This disjoint setup is arguably sub-optimal for input (video) to output (description) mapping. In this work, we propose to optimise both encoder and decoder simultaneously in an end-to-end fashion. In a two-stage training setting, we first initialise our architecture using pre-trained encoders and decoders -- then, the entire network is trained end-to-end in a fine-tuning stage to learn the most relevant features for video caption generation. In our experiments, we use GoogLeNet and Inception-ResNet-v2 as encoders and an original Soft-Attention (SA-) LSTM as a decoder. Analogously to gains observed in other computer vision problems, we show that end-to-end training significantly improves over the traditional, disjoint training process. We evaluate our End-to-End (EtENet) Networks on the Microsoft Research Video Description (MSVD) and the MSR Video to Text (MSR-VTT) benchmark datasets, showing how EtENet achieves state-of-the-art performance across the board.

0
5
下载
预览

Recent progress has been made in using attention based encoder-decoder framework for image and video captioning. Most existing decoders apply the attention mechanism to every generated word including both visual words (e.g., "gun" and "shooting") and non-visual words (e.g. "the", "a"). However, these non-visual words can be easily predicted using natural language model without considering visual signals or attention. Imposing attention mechanism on non-visual words could mislead and decrease the overall performance of visual captioning. Furthermore, the hierarchy of LSTMs enables more complex representation of visual data, capturing information at different scales. To address these issues, we propose a hierarchical LSTM with adaptive attention (hLSTMat) approach for image and video captioning. Specifically, the proposed framework utilizes the spatial or temporal attention for selecting specific regions or frames to predict the related words, while the adaptive attention is for deciding whether to depend on the visual information or the language context information. Also, a hierarchical LSTMs is designed to simultaneously consider both low-level visual information and high-level language context information to support the caption generation. We initially design our hLSTMat for video captioning task. Then, we further refine it and apply it to image captioning task. To demonstrate the effectiveness of our proposed framework, we test our method on both video and image captioning tasks. Experimental results show that our approach achieves the state-of-the-art performance for most of the evaluation metrics on both tasks. The effect of important components is also well exploited in the ablation study.

0
5
下载
预览

The explosion of video data on the internet requires effective and efficient technology to generate captions automatically for people who are not able to watch the videos. Despite the great progress of video captioning research, particularly on video feature encoding, the language decoder is still largely based on the prevailing RNN decoder such as LSTM, which tends to prefer the frequent word that aligns with the video. In this paper, we propose a boundary-aware hierarchical language decoder for video captioning, which consists of a high-level GRU based language decoder, working as a global (caption-level) language model, and a low-level GRU based language decoder, working as a local (phrase-level) language model. Most importantly, we introduce a binary gate into the low-level GRU language decoder to detect the language boundaries. Together with other advanced components including joint video prediction, shared soft attention, and boundary-aware video encoding, our integrated video captioning framework can discover hierarchical language information and distinguish the subject and the object in a sentence, which are usually confusing during the language generation. Extensive experiments on two widely-used video captioning datasets, MSR-Video-to-Text (MSR-VTT) \cite{xu2016msr} and YouTube-to-Text (MSVD) \cite{chen2011collecting} show that our method is highly competitive, compared with the state-of-the-art methods.

0
4
下载
预览

Automatically describing a video with natural language is regarded as a fundamental challenge in computer vision. The problem nevertheless is not trivial especially when a video contains multiple events to be worthy of mention, which often happens in real videos. A valid question is how to temporally localize and then describe events, which is known as "dense video captioning." In this paper, we present a novel framework for dense video captioning that unifies the localization of temporal event proposals and sentence generation of each proposal, by jointly training them in an end-to-end manner. To combine these two worlds, we integrate a new design, namely descriptiveness regression, into a single shot detection structure to infer the descriptive complexity of each detected proposal via sentence generation. This in turn adjusts the temporal locations of each event proposal. Our model differs from existing dense video captioning methods since we propose a joint and global optimization of detection and captioning, and the framework uniquely capitalizes on an attribute-augmented video captioning architecture. Extensive experiments are conducted on ActivityNet Captions dataset and our framework shows clear improvements when compared to the state-of-the-art techniques. More remarkably, we obtain a new record: METEOR of 12.96% on ActivityNet Captions official test set.

0
5
下载
预览

We propose a novel method capable of retrieving clips from untrimmed videos based on natural language queries. This cross-modal retrieval task plays a key role in visual-semantic understanding, and requires localizing clips in time and computing their similarity to the query sentence. Current methods generate sentence and video embeddings and then compare them using a late fusion approach, but this ignores the word order in queries and prevents more fine-grained comparisons. Motivated by the need for fine-grained multi-modal feature fusion, we propose a novel early fusion embedding approach that combines video and language information at the word level. Furthermore, we use the inverse task of dense video captioning as a side-task to improve the learned embedding. Our full model combines these components with an efficient proposal pipeline that performs accurate localization of potential video clips. We present a comprehensive experimental validation on two large-scale text-to-clip datasets (Charades-STA and DiDeMo) and attain state-of-the-art retrieval results with our model.

0
4
下载
预览

Dense video captioning is a newly emerging task that aims at both localizing and describing all events in a video. We identify and tackle two challenges on this task, namely, (1) how to utilize both past and future contexts for accurate event proposal predictions, and (2) how to construct informative input to the decoder for generating natural event descriptions. First, previous works predominantly generate temporal event proposals in the forward direction, which neglects future video context. We propose a bidirectional proposal method that effectively exploits both past and future contexts to make proposal predictions. Second, different events ending at (nearly) the same time are indistinguishable in the previous works, resulting in the same captions. We solve this problem by representing each event with an attentive fusion of hidden states from the proposal module and video contents (e.g., C3D features). We further propose a novel context gating mechanism to balance the contributions from the current event and its surrounding contexts dynamically. We empirically show that our attentively fused event representation is superior to the proposal hidden states or video contents alone. By coupling proposal and captioning modules into one unified framework, our model outperforms the state-of-the-arts on the ActivityNet Captions dataset with a relative gain of over 100% (Meteor score increases from 4.82 to 9.65).

0
4
下载
预览
小贴士
相关论文
Spatio-Temporal Graph for Video Captioning with Knowledge Distillation
Boxiao Pan,Haoye Cai,De-An Huang,Kuan-Hui Lee,Adrien Gaidon,Ehsan Adeli,Juan Carlos Niebles
17+阅读 · 2020年3月31日
Activitynet 2019 Task 3: Exploring Contexts for Dense Captioning Events in Videos
Shizhe Chen,Yuqing Song,Yida Zhao,Qin Jin,Zhaoyang Zeng,Bei Liu,Jianlong Fu,Alexander Hauptmann
3+阅读 · 2019年7月11日
Temporal Deformable Convolutional Encoder-Decoder Networks for Video Captioning
Jingwen Chen,Yingwei Pan,Yehao Li,Ting Yao,Hongyang Chao,Tao Mei
4+阅读 · 2019年5月3日
Jonghwan Mun,Linjie Yang,Zhou Ren,Ning Xu,Bohyung Han
7+阅读 · 2019年4月8日
Silvio Olivastri,Gurkirt Singh,Fabio Cuzzolin
5+阅读 · 2019年4月4日
Hierarchical LSTMs with Adaptive Attention for Visual Captioning
Jingkuan Song,Xiangpeng Li,Lianli Gao,Heng Tao Shen
5+阅读 · 2018年12月26日
Video Captioning with Boundary-aware Hierarchical Language Decoding and Joint Video Prediction
Xiangxi Shi,Jianfei Cai,Jiuxiang Gu,Shafiq Joty
4+阅读 · 2018年7月8日
Yehao Li,Ting Yao,Yingwei Pan,Hongyang Chao,Tao Mei
5+阅读 · 2018年4月23日
Huijuan Xu,Kun He,Leonid Sigal,Stan Sclaroff,Kate Saenko
4+阅读 · 2018年4月13日
Jingwen Wang,Wenhao Jiang,Lin Ma,Wei Liu,Yong Xu
4+阅读 · 2018年4月3日
相关VIP内容
基于多头注意力胶囊网络的文本分类模型
专知会员服务
51+阅读 · 2020年5月24日
专知会员服务
53+阅读 · 2020年2月3日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
6+阅读 · 2019年5月18日
简评 | Video Action Recognition 的近期进展
极市平台
15+阅读 · 2019年4月21日
胶囊网络资源汇总
论智
7+阅读 · 2018年3月10日
Top