This article considers inference in linear instrumental variables models with many regressors, all of which could be endogenous. We propose the STIV estimator. Identification robust confidence sets are derived by solving linear programs. We present results on rates of convergence, variable selection, confidence sets which adapt to the sparsity, and analyze confidence bands for vectors of linear functions using bias correction. We also provide solutions to some instruments being endogenous. The application is to the EASI demand system.


翻译:本条考虑了线性工具变量模型的推论, 有许多递减器, 所有这些都可能是内生的。 我们建议使用 STIV 估计器 。 识别坚固的置信箱通过解决线性程序产生 。 我们介绍了关于趋同率、 可变选择、 适应宽度的置信箱的结果, 并利用偏差校正来分析线性函数矢量的置信带 。 我们还为一些内生工具提供了解决方案 。 应用程序是 EASI 需求系统 的 。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年10月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员