Semiconductor manufacturing is an extremely complex and precision-driven process, characterized by thousands of interdependent parameters collected across diverse tools and process steps. Multi-variate time-series analysis has emerged as a critical field for real-time monitoring and fault detection in such environments. However, anomaly prediction in semiconductor fabrication presents several critical challenges, including high dimensionality of sensor data and severe class imbalance due to the rarity of true faults. Furthermore, the complex interdependencies between variables complicate both anomaly prediction and root-cause-analysis. This paper proposes two novel approaches to advance the field from anomaly detection to anomaly prediction, an essential step toward enabling real-time process correction and proactive fault prevention. The proposed anomaly prediction framework contains two main stages: (a) training a forecasting model on a dataset assumed to contain no anomalies, and (b) performing forecast on unseen time series data. The forecast is compared with the forecast of the trained signal. Deviations beyond a predefined threshold are flagged as anomalies. The two approaches differ in the forecasting model employed. The first assumes independence between variables by utilizing the N-BEATS model for univariate time series forecasting. The second lifts this assumption by utilizing a Graph Neural Network (GNN) to capture inter-variable relationships. Both models demonstrate strong forecasting performance up to a horizon of 20 time points and maintain stable anomaly prediction up to 50 time points. The GNN consistently outperforms the N-BEATS model while requiring significantly fewer trainable parameters and lower computational cost. These results position the GNN as promising solution for online anomaly forecasting to be deployed in manufacturing environments.


翻译:半导体制造是一个极其复杂且精度驱动的过程,其特点是在不同的设备和工艺步骤中采集了数千个相互依赖的参数。多变量时间序列分析已成为此类环境中实时监控与故障检测的关键领域。然而,半导体制造中的异常预测面临着若干关键挑战,包括传感器数据的高维性以及由于真实故障的稀有性导致的严重类别不平衡。此外,变量之间复杂的相互依赖性使得异常预测和根本原因分析都变得复杂。本文提出了两种新颖的方法,以推动该领域从异常检测迈向异常预测——这是实现实时工艺校正和主动故障预防的关键一步。所提出的异常预测框架包含两个主要阶段:(a) 在一个假定不包含异常的数据集上训练一个预测模型,以及 (b) 对未见的时间序列数据进行预测。将该预测结果与训练信号的预测值进行比较。超出预定义阈值的偏差被标记为异常。两种方法的区别在于所使用的预测模型。第一种方法通过利用N-BEATS模型进行单变量时间序列预测,假设变量之间相互独立。第二种方法则通过利用图神经网络(GNN)来捕捉变量间的关系,从而放宽了这一独立性假设。两种模型在长达20个时间点的预测范围内均表现出强大的预测性能,并在长达50个时间点的范围内保持稳定的异常预测能力。GNN模型在显著减少可训练参数和降低计算成本的同时,其性能始终优于N-BEATS模型。这些结果表明,GNN有望成为一种可在制造环境中部署的在线异常预测解决方案。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员