Autonomous drone navigation in confined tubular environments remains a major challenge due to the constraining geometry of the conduits, the proximity of the walls, and the perceptual limitations inherent to such scenarios. We propose a reinforcement learning approach enabling a drone to navigate unknown three-dimensional tubes without any prior knowledge of their geometry, relying solely on local observations from LiDAR and a conditional visual detection of the tube center. In contrast, the Pure Pursuit algorithm, used as a deterministic baseline, benefits from explicit access to the centerline, creating an information asymmetry designed to assess the ability of RL to compensate for the absence of a geometric model. The agent is trained through a progressive Curriculum Learning strategy that gradually exposes it to increasingly curved geometries, where the tube center frequently disappears from the visual field. A turning-negotiation mechanism, based on the combination of direct visibility, directional memory, and LiDAR symmetry cues, proves essential for ensuring stable navigation under such partial observability conditions. Experiments show that the PPO policy acquires robust and generalizable behavior, consistently outperforming the deterministic controller despite its limited access to geometric information. Validation in a high-fidelity 3D environment further confirms the transferability of the learned behavior to a continuous physical dynamics. The proposed approach thus provides a complete framework for autonomous navigation in unknown tubular environments and opens perspectives for industrial, underground, or medical applications where progressing through narrow and weakly perceptive conduits represents a central challenge.


翻译:在受限管状环境中实现自主无人机导航仍然是一个重大挑战,这主要源于管道的约束几何结构、壁面的邻近性以及此类场景固有的感知局限性。我们提出一种强化学习方法,使无人机能够在没有任何几何先验知识的情况下导航未知的三维管道,仅依赖于激光雷达的局部观测和管道中心的条件性视觉检测。相比之下,作为确定性基线的Pure Pursuit算法受益于对中心线的显式访问,这种信息不对称性旨在评估强化学习在缺乏几何模型时的补偿能力。智能体通过渐进式课程学习策略进行训练,逐步将其暴露于曲率逐渐增大的几何环境中,其中管道中心频繁从视野中消失。基于直接可见性、方向记忆和激光雷达对称性线索相结合的转向协商机制,被证明对于确保在此类部分可观测条件下的稳定导航至关重要。实验表明,PPO策略获得了鲁棒且可泛化的行为,尽管其几何信息获取有限,但仍持续优于确定性控制器。在高保真三维环境中的验证进一步证实了所学行为向连续物理动力学的可迁移性。因此,所提出的方法为未知管状环境中的自主导航提供了一个完整框架,并为工业、地下或医疗应用中穿越狭窄且感知能力弱的管道这一核心挑战开辟了前景。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员