Although not explicitly declared, most research rankings of countries and institutions are supposed to reveal their contribution to the advancement of knowledge. However, such advances are based on very highly cited publications with very low frequency, which can only very exceptionally be counted with statistical reliability. Percentile indicators enable calculations of the probability or frequency of such rare publications using counts of much more frequent publications; the general rule is that rankings based on the number of top 10% or 1% cited publications (Ptop 10%, Ptop 1%) will also be valid for the rare publications that push the boundaries of knowledge. Japan and its universities are exceptions, as their frequent Nobel Prizes contradicts their low Ptop 10% and Ptop 1%. We explain that this occurs because, in single research fields, the singularity of percentile indicators holds only for research groups that are homogeneous in their aims and efficiency. Correct calculations for ranking countries and institutions should add the results of their homogeneous groups, instead of considering all publications as a single set. Although based on Japan, our findings have a general character. Common predictions of scientific advances based on Ptop 10% might be severalfold lower than correct calculations.


翻译:虽然没有明确宣布,但大部分国家和机构的研究排名本应表明它们对知识进步的贡献。然而,这些进展是基于非常高引用的非常低频率的出版物,只有非常例外地用统计可靠性来计算。指标的百分率使得能够使用大量更频繁的出版物来计算这类稀有出版物的概率或频率;一般规则是,根据引用的10%或1%最高出版物(Ptop 10 %,Ptop 1 %)的数量来进行排名,对于推展知识界限的稀有出版物也是有效的。日本及其大学是例外,因为它们经常获得的诺贝尔奖与较低的10%和Ptop 1 %相矛盾。我们解释说,这是因为,在单一研究领域,百分率指标的独特性只存在于目标和效率相同的研究组中。对等级国家和机构的精确计算应该增加其同质类出版物的成绩,而不是将所有出版物都视为单一组。虽然根据日本,但我们的研究结果具有一般特征。基于Ptop 10 %的科学进步的共同预测可能比正确计算低几倍。

0
下载
关闭预览

相关内容

【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月27日
Arxiv
13+阅读 · 2022年8月16日
Arxiv
15+阅读 · 2020年12月17日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
相关论文
Arxiv
0+阅读 · 2023年1月27日
Arxiv
13+阅读 · 2022年8月16日
Arxiv
15+阅读 · 2020年12月17日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员