We present a class of fast subspace tracking algorithms based on orthogonal iterations for structured matrices/pencils that can be represented as small rank perturbations of unitary matrices. The algorithms rely upon an updated data sparse factorization -- named LFR factorization -- using orthogonal Hessenberg matrices. These new subspace trackers reach a complexity of only $O(nk^2)$ operations per time update, where $n$ and $k$ are the size of the matrix and of the small rank perturbation, respectively.


翻译:我们提出一组基于结构矩阵/支架正方位迭代的快速子空间跟踪算法,可以作为单质矩阵小层次扰动的表示。这些算法依赖于使用正方位赫森贝格矩阵进行的最新数据稀疏系数化(称为LFR因数化),这些新的子空间跟踪算法的复杂程度是每次更新仅达到O(nk)2美元操作的复杂程度,其中,美元和K美元分别相当于矩阵大小和小层次扰动大小。

0
下载
关闭预览

相关内容

专知会员服务
78+阅读 · 2021年3月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员