In a seminal paper in 2013, Witt showed that the (1+1) Evolutionary Algorithm with standard bit mutation needs time $(1+o(1))n \ln n/p_1$ to find the optimum of any linear function, as long as the probability $p_1$ to flip exactly one bit is $\Theta(1)$. In this paper we investigate how this result generalizes if standard bit mutation is replaced by an arbitrary unbiased mutation operator. This situation is notably different, since the stochastic domination argument used for the lower bound by Witt no longer holds. In particular, starting closer to the optimum is not necessarily an advantage, and OneMax is no longer the easiest function for arbitrary starting position. Nevertheless, we show that Witt's result carries over if $p_1$ is not too small and if the number of flipped bits has bounded expectation~$\mu$. Notably, this includes some of the heavy-tail mutation operators used in fast genetic algorithms, but not all of them. We also give examples showing that algorithms with unbounded $\mu$ have qualitatively different trajectories close to the optimum.


翻译:在2013年的创世文件中, Witt 显示, 标准位突变需要时间( 1+1) 的进化算法( 1+1), 标准位突变标准比重的进化算法需要时间 $(1+o(1)) n\ ln/ p_ 1$), 以找到任何线性函数的最佳值, 只要翻转精确一位的概率$p_ 1美元是 $\ Theta(1)$ 。 在本文中, 我们调查如果标准位突变由任意的不偏倚的突变操作器取代的话, 此结果会如何概括化 。 这一情况明显不同, 因为Witt 下限的下限使用的重整变异控参数不再存在 。 特别是, 开始接近最佳值的 OneMax不一定是一个优势, 也不是任意启动位置的最容易的函数 。 然而, 我们显示, 如果 $\ $ 1 美元并不太小,, 并且 翻转位数数的比值的预期为~ $\ $ $ 。 。</s>

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
15+阅读 · 2020年12月17日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
相关基金
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员