Given a manifold $\mathcal{M} \subset \mathbb{R}^n$, we consider all codimension-1 submanifolds of $\mathcal{M}$ that satisfy the generalized Stokes' theorem and show that $\partial\mathcal{M}$ uniquely maximizes the associated entropy functional. This provides an information theoretic characterization of the duality expressed by Stokes' theorem, whereby a manifold's boundary is its 'least informative' subset satisfying the Stokes relation.
翻译:给定流形 $\mathcal{M} \subset \mathbb{R}^n$,我们考虑所有满足广义斯托克斯定理的 $\mathcal{M}$ 的余维1子流形,并证明 $\partial\mathcal{M}$ 唯一地最大化相关的熵泛函。这为斯托克斯定理所表达的对偶性提供了一个信息论特征:流形的边界是其满足斯托克斯关系的‘信息量最小’的子集。