We introduce AttentionSwarm, a novel benchmark designed to evaluate safe and efficient swarm control in a dynamic drone racing scenario. Central to our approach is the Attention Model-Based Control Barrier Function (CBF) framework, which integrates attention mechanisms with safety-critical control theory to enable real-time collision avoidance and trajectory optimization. This framework dynamically prioritizes critical obstacles and agents in the swarm's vicinity using attention weights, while CBFs formally guarantee safety by enforcing collision-free constraints. The AttentionSwarm algorithm was developed and evaluated using a swarm of Crazyflie 2.1 micro quadrotors, which were tested indoors with the Vicon motion capture system to ensure precise localization and control. Experimental results show that our system achieves a 95-100% collision-free navigation rate in a dynamic multi-agent drone racing environment, underscoring its effectiveness and robustness in real-world scenarios. This work offers a promising foundation for safe, high-speed multi-robot applications in logistics, inspection, and racing.


翻译:本文提出AttentionSwarm,一种用于评估动态无人机竞速场景中安全高效集群控制的新型基准框架。其核心是基于注意力模型的控制屏障函数框架,该框架将注意力机制与安全临界控制理论相结合,实现实时避碰与轨迹优化。该框架通过注意力权重动态优先处理集群邻近的关键障碍物与智能体,同时控制屏障函数通过强制执行无碰撞约束从形式上保障安全性。AttentionSwarm算法基于Crazyflie 2.1微型四旋翼集群开发验证,在室内通过Vicon运动捕捉系统进行测试以确保精确定位与控制。实验结果表明,在动态多智能体无人机竞速环境中,本系统实现了95-100%的无碰撞导航率,彰显了其在真实场景中的有效性与鲁棒性。本研究为物流、巡检与竞速等领域的安全高速多机器人应用奠定了坚实基础。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员