The Rasch model, a classical model in the item response theory, is widely used in psychometrics to model the relationship between individuals' latent traits and their binary responses to assessments or questionnaires. In this paper, we introduce a new likelihood-based estimator -- random pairing maximum likelihood estimator ($\mathrm{RP\text{-}MLE}$) and its bootstrapped variant multiple random pairing MLE ($\mathrm{MRP\text{-}MLE}$) which faithfully estimate the item parameters in the Rasch model. The new estimators have several appealing features compared to existing ones. First, both work for sparse observations, an increasingly important scenario in the big data era. Second, both estimators are provably minimax optimal in terms of finite sample $\ell_{\infty}$ estimation error. Lastly, both admit precise distributional characterization that allows uncertainty quantification on the item parameters, e.g., construction of confidence intervals for the item parameters. The main idea underlying $\mathrm{RP\text{-}MLE}$ and $\mathrm{MRP\text{-}MLE}$ is to randomly pair user-item responses to form item-item comparisons. This is carefully designed to reduce the problem size while retaining statistical independence. We also provide empirical evidence of the efficacy of the two new estimators using both simulated and real data.
翻译:Rasch模型作为项目反应理论中的经典模型,在心理测量学中被广泛用于建模个体潜在特质与其对评估或问卷的二元响应之间的关系。本文提出一种新的基于似然的估计器——随机配对最大似然估计器($\\mathrm{RP\\text{-}MLE}$)及其自助法变体多重随机配对最大似然估计器($\\mathrm{MRP\\text{-}MLE}$),能够准确估计Rasch模型中的项目参数。与现有估计器相比,新估计器具有若干显著优势:首先,两者均适用于稀疏观测场景——这一情形在大数据时代日益重要;其次,两种估计器在有限样本$\\ell_{\\infty}$估计误差方面均被证明具有极小极大最优性;最后,两者均允许精确的分布表征,从而支持项目参数的不确定性量化,例如构建项目参数的置信区间。$\\mathrm{RP\\text{-}MLE}$与$\\mathrm{MRP\\text{-}MLE}$的核心思想是通过随机配对用户-项目响应以形成项目-项目比较,该设计在缩减问题规模的同时保持了统计独立性。本文还通过模拟数据与真实数据提供了两种新估计器有效性的实证证据。