Robust controllers that stabilize dynamical systems even under disturbances and noise are often formulated as solutions of nonsmooth, nonconvex optimization problems. While methods such as gradient sampling can handle the nonconvexity and nonsmoothness, the costs of evaluating the objective function may be substantial, making robust control challenging for dynamical systems with high-dimensional state spaces. In this work, we introduce multi-fidelity variants of gradient sampling that leverage low-cost, low-fidelity models with low-dimensional state spaces for speeding up the optimization process while nonetheless providing convergence guarantees for a high-fidelity model of the system of interest, which is primarily accessed in the last phase of the optimization process. Our first multi-fidelity method initiates gradient sampling on higher fidelity models with starting points obtained from cheaper, lower fidelity models. Our second multi-fidelity method relies on ensembles of gradients that are computed from low- and high-fidelity models. Numerical experiments with controlling the cooling of a steel rail profile and laminar flow in a cylinder wake demonstrate that our new multi-fidelity gradient sampling methods achieve up to two orders of magnitude speedup compared to the single-fidelity gradient sampling method that relies on the high-fidelity model alone.
翻译:即便在扰动和噪音下稳定动态系统的强力控制器,即便在扰动和噪音下,也往往被设计成非休眠、非休眠优化问题的解决方案。虽然梯度取样等方法可以处理非通融和非不顺流问题,但评估目标功能的成本可能非常巨大,对高维状态空间的动态系统来说,要对高维状态空间的强力控制具有挑战性。在这项工作中,我们引入了多种梯度取样变异,利用低成本、低忠诚度模型的低维度模型加速优化进程,同时为利益系统的高不忠性模型提供趋同保证,而这种模型主要是在优化进程的最后阶段获得的。我们的第一个多忠诚方法启动对更高忠诚性模型的梯度取样,其起始点来自更便宜、更低忠诚度模型。我们第二个多纤维采样方法依赖于从低和高不易碎度模型计算出的梯度模型。在控制钢铁轨剖面冷却和拉米纳尔在钢质后继而形成一个气瓶中流动的数值实验。我们的第一个多度采样式采样方法能够单独地显示,在高易变速度方法上达到两个级。