High-order Hadamard-form entropy stable multidimensional summation-by-parts discretizations of the Euler and compressible Navier-Stokes equations are considerably more expensive than the standard divergence-form discretization. In search of a more efficient entropy stable scheme, we extend the entropy-split method for implementation on unstructured grids and investigate its properties. The main ingredients of the scheme are Harten's entropy functions, diagonal-$ \mathsf{E} $ summation-by-parts operators with diagonal norm matrix, and entropy conservative simultaneous approximation terms (SATs). We show that the scheme is high-order accurate and entropy conservative on periodic curvilinear unstructured grids for the Euler equations. An entropy stable matrix-type interface dissipation operator is constructed, which can be added to the SATs to obtain an entropy stable semi-discretization. Fully-discrete entropy conservation is achieved using a relaxation Runge-Kutta method. Entropy stable viscous SATs, applicable to both the Hadamard-form and entropy-split schemes, are developed for the compressible Navier-Stokes equations. In the absence of heat fluxes, the entropy-split scheme is entropy stable for the compressible Navier-Stokes equations. Local conservation in the vicinity of discontinuities is enforced using an entropy stable hybrid scheme. Several numerical problems involving both smooth and discontinuous solutions are investigated to support the theoretical results. Computational cost comparison studies suggest that the entropy-split scheme offers substantial efficiency benefits relative to Hadamard-form multidimensional SBP-SAT discretizations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员