Purpose: The rapid integration of artificial intelligence (AI) systems like ChatGPT, Claude AI, etc., has a deep impact on how work is done. Predicting how AI will reshape work requires understanding not just its capabilities, but how it is actually being adopted. This study investigates which intrinsic task characteristics drive users' decisions to delegate work to AI systems. Methodology: This study utilizes the Anthropic Economic Index dataset of four million Claude AI interactions mapped to O*NET tasks. We systematically scored each task across seven key dimensions: Routine, Cognitive, Social Intelligence, Creativity, Domain Knowledge, Complexity, and Decision Making using 35 parameters. We then employed multivariate techniques to identify latent task archetypes and analyzed their relationship with AI usage. Findings: Tasks requiring high creativity, complexity, and cognitive demand, but low routineness, attracted the most AI engagement. Furthermore, we identified three task archetypes: Dynamic Problem Solving, Procedural & Analytical Work, and Standardized Operational Tasks, demonstrating that AI applicability is best predicted by a combination of task characteristics, over individual factors. Our analysis revealed highly concentrated AI usage patterns, with just 5% of tasks accounting for 59% of all interactions. Originality: This research provides the first systematic evidence linking real-world generative AI usage to a comprehensive, multi-dimensional framework of intrinsic task characteristics. It introduces a data-driven classification of work archetypes that offers a new framework for analyzing the emerging human-AI division of labor.


翻译:目的:以ChatGPT、Claude AI等为代表的人工智能系统迅速融入工作流程,深刻改变了工作方式。预测人工智能如何重塑工作不仅需要理解其技术能力,更需了解其实际采纳模式。本研究探讨了哪些内在任务特征驱动用户将工作委托给人工智能系统。方法:本研究利用Anthropic经济指数数据集,该数据集包含四百万次Claude AI交互记录,并与O*NET职业任务体系进行映射。我们通过35个参数系统评估了每项任务在七个关键维度的得分:常规性、认知性、社交智能、创造性、领域知识、复杂性及决策制定。随后采用多元统计技术识别潜在任务原型,并分析其与人工智能使用率的关系。发现:需要高创造性、高复杂性、高认知需求但低常规性的任务吸引了最多的人工智能交互。进一步识别出三种任务原型:动态问题解决型、流程与分析型、标准化操作型,表明人工智能适用性最好通过任务特征组合而非单一因素来预测。分析显示人工智能使用模式高度集中,仅5%的任务占据了59%的交互总量。原创性:本研究首次通过系统证据将现实世界生成式人工智能使用情况与多维度的内在任务特征框架相关联,提出了基于数据驱动的工作原型分类体系,为分析新兴的人机分工模式提供了全新框架。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
43+阅读 · 2024年1月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员