Purpose: The rapid integration of artificial intelligence (AI) systems like ChatGPT, Claude AI, etc., has a deep impact on how work is done. Predicting how AI will reshape work requires understanding not just its capabilities, but how it is actually being adopted. This study investigates which intrinsic task characteristics drive users' decisions to delegate work to AI systems. Methodology: This study utilizes the Anthropic Economic Index dataset of four million Claude AI interactions mapped to O*NET tasks. We systematically scored each task across seven key dimensions: Routine, Cognitive, Social Intelligence, Creativity, Domain Knowledge, Complexity, and Decision Making using 35 parameters. We then employed multivariate techniques to identify latent task archetypes and analyzed their relationship with AI usage. Findings: Tasks requiring high creativity, complexity, and cognitive demand, but low routineness, attracted the most AI engagement. Furthermore, we identified three task archetypes: Dynamic Problem Solving, Procedural & Analytical Work, and Standardized Operational Tasks, demonstrating that AI applicability is best predicted by a combination of task characteristics, over individual factors. Our analysis revealed highly concentrated AI usage patterns, with just 5% of tasks accounting for 59% of all interactions. Originality: This research provides the first systematic evidence linking real-world generative AI usage to a comprehensive, multi-dimensional framework of intrinsic task characteristics. It introduces a data-driven classification of work archetypes that offers a new framework for analyzing the emerging human-AI division of labor.
翻译:目的:以ChatGPT、Claude AI等为代表的人工智能系统的快速集成,深刻改变了工作的执行方式。预测人工智能如何重塑工作,不仅需要理解其能力,还需了解其实际采纳情况。本研究探讨了哪些内在任务特征驱动用户将工作委托给人工智能系统。方法:本研究利用Anthropic Economic Index数据集,该数据集包含四百万次Claude AI交互记录,并映射至O*NET任务体系。我们使用35个参数,系统性地从七个关键维度对每个任务进行评分:常规性、认知性、社交智能、创造性、领域知识、复杂性及决策制定。随后采用多元统计技术识别潜在的任务原型,并分析其与人工智能使用的关系。发现:需要高创造性、高复杂性和高认知需求,但低常规性的任务吸引了最多的人工智能参与。此外,我们识别出三种任务原型:动态问题解决型、程序性与分析型工作、标准化操作型任务,表明人工智能的适用性最好通过任务特征组合而非单一因素来预测。分析揭示了高度集中的人工智能使用模式,仅5%的任务占据了总交互量的59%。原创性:本研究首次提供了系统性证据,将现实世界中的生成式人工智能使用与一个全面的、多维度的内在任务特征框架联系起来。它引入了一种数据驱动的工作原型分类方法,为分析新兴的人机分工提供了新的理论框架。