This paper introduces MakeupBag, a novel method for automatic makeup style transfer. Our proposed technique can transfer a new makeup style from a reference face image to another previously unseen facial photograph. We solve makeup disentanglement and facial makeup application as separable objectives, in contrast to other current deep methods that entangle the two tasks. MakeupBag presents a significant advantage for our approach as it allows customization and pixel specific modification of the extracted makeup style, which is not possible using current methods. Extensive experiments, both qualitative and numerical, are conducted demonstrating the high quality and accuracy of the images produced by our method. Furthermore, in contrast to most other current methods, MakeupBag tackles both classical and extreme and costume makeup transfer. In a comparative analysis, MakeupBag is shown to outperform current state-of-the-art approaches.

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem

As the number of installed meters in buildings increases, there is a growing number of data time-series that could be used to develop data-driven models to support and optimize building operation. However, building data sets are often characterized by errors and missing values, which are considered, by the recent research, among the main limiting factors on the performance of the proposed models. Motivated by the need to address the problem of missing data in building operation, this work presents a data-driven approach to fill these gaps. In this study, three different autoencoder neural networks are trained to reconstruct missing short-term indoor environment data time-series in a data set collected in an office building in Aachen, Germany. This consisted of a four year-long monitoring campaign in and between the years 2014 and 2017, of 84 different rooms. The models are applicable for different time-series obtained from room automation, such as indoor air temperature, relative humidity and $CO_{2}$ data streams. The results prove that the proposed methods outperform classic numerical approaches and they result in reconstructing the corresponding variables with average RMSEs of 0.42 {\deg}C, 1.30 % and 78.41 ppm, respectively.

0
0
下载
预览

Training (source) domain bias affects state-of-the-art object detectors, such as Faster R-CNN, when applied to new (target) domains. To alleviate this problem, researchers proposed various domain adaptation methods to improve object detection results in the cross-domain setting, e.g. by translating images with ground-truth labels from the source domain to the target domain using Cycle-GAN. On top of combining Cycle-GAN transformations and self-paced learning in a smart and efficient way, in this paper, we propose a novel self-paced algorithm that learns from easy to hard. Our method is simple and effective, without any overhead during inference. It uses only pseudo-labels for samples taken from the target domain, i.e. the domain adaptation is unsupervised. We conduct experiments on four cross-domain benchmarks, showing better results than the state of the art. We also perform an ablation study demonstrating the utility of each component in our framework. Additionally, we study the applicability of our framework to other object detectors. Furthermore, we compare our difficulty measure with other measures from the related literature, proving that it yields superior results and that it correlates well with the performance metric.

0
0
下载
预览

Generalized Zero-Shot Learning (GZSL) aims to recognize images from both seen and unseen categories. Most GZSL methods typically learn to synthesize CNN visual features for the unseen classes by leveraging entire semantic information, e.g., tags and attributes, and the visual features of the seen classes. Within the visual features, we define two types of features that semantic-consistent and semantic-unrelated to represent the characteristics of images annotated in attributes and less informative features of images respectively. Ideally, the semantic-unrelated information is impossible to transfer by semantic-visual relationship from seen classes to unseen classes, as the corresponding characteristics are not annotated in the semantic information. Thus, the foundation of the visual feature synthesis is not always solid as the features of the seen classes may involve semantic-unrelated information that could interfere with the alignment between semantic and visual modalities. To address this issue, in this paper, we propose a novel feature disentangling approach based on an encoder-decoder architecture to factorize visual features of images into these two latent feature spaces to extract corresponding representations. Furthermore, a relation module is incorporated into this architecture to learn semantic-visual relationship, whilst a total correlation penalty is applied to encourage the disentanglement of two latent representations. The proposed model aims to distill quality semantic-consistent representations that capture intrinsic features of seen images, which are further taken as the generation target for unseen classes. Extensive experiments conducted on seven GZSL benchmark datasets have verified the state-of-the-art performance of the proposal.

0
0
下载
预览

In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).

0
10
下载
预览

Our interest in this paper is in meeting a rapidly growing industrial demand for information extraction from images of documents such as invoices, bills, receipts etc. In practice users are able to provide a very small number of example images labeled with the information that needs to be extracted. We adopt a novel two-level neuro-deductive, approach where (a) we use pre-trained deep neural networks to populate a relational database with facts about each document-image; and (b) we use a form of deductive reasoning, related to meta-interpretive learning of transition systems to learn extraction programs: Given task-specific transitions defined using the entities and relations identified by the neural detectors and a small number of instances (usually 1, sometimes 2) of images and the desired outputs, a resource-bounded meta-interpreter constructs proofs for the instance(s) via logical deduction; a set of logic programs that extract each desired entity is easily synthesized from such proofs. In most cases a single training example together with a noisy-clone of itself suffices to learn a program-set that generalizes well on test documents, at which time the value of each entity is determined by a majority vote across its program-set. We demonstrate our two-level neuro-deductive approach on publicly available datasets ("Patent" and "Doctor's Bills") and also describe its use in a real-life industrial problem.

0
3
下载
预览

Machine learning methods are powerful in distinguishing different phases of matter in an automated way and provide a new perspective on the study of physical phenomena. We train a Restricted Boltzmann Machine (RBM) on data constructed with spin configurations sampled from the Ising Hamiltonian at different values of temperature and external magnetic field using Monte Carlo methods. From the trained machine we obtain the flow of iterative reconstruction of spin state configurations to faithfully reproduce the observables of the physical system. We find that the flow of the trained RBM approaches the spin configurations of the maximal possible specific heat which resemble the near criticality region of the Ising model. In the special case of the vanishing magnetic field the trained RBM converges to the critical point of the Renormalization Group (RG) flow of the lattice model. Our results suggest an alternative explanation of how the machine identifies the physical phase transitions, by recognizing certain properties of the configuration like the maximization of the specific heat, instead of associating directly the recognition procedure with the RG flow and its fixed points. Then from the reconstructed data we deduce the critical exponent associated to the magnetization to find satisfactory agreement with the actual physical value. We assume no prior knowledge about the criticality of the system and its Hamiltonian.

0
3
下载
预览

Kernel methods have produced state-of-the-art results for a number of NLP tasks such as relation extraction, but suffer from poor scalability due to the high cost of computing kernel similarities between discrete natural language structures. A recently proposed technique, kernelized locality-sensitive hashing (KLSH), can significantly reduce the computational cost, but is only applicable to classifiers operating on kNN graphs. Here we propose to use random subspaces of KLSH codes for efficiently constructing an explicit representation of NLP structures suitable for general classification methods. Further, we propose an approach for optimizing the KLSH model for classification problems by maximizing a variational lower bound on mutual information between the KLSH codes (feature vectors) and the class labels. We evaluate the proposed approach on biomedical relation extraction datasets, and observe significant and robust improvements in accuracy w.r.t. state-of-the-art classifiers, along with drastic (orders-of-magnitude) speedup compared to conventional kernel methods.

0
3
下载
预览

Topic models have been widely explored as probabilistic generative models of documents. Traditional inference methods have sought closed-form derivations for updating the models, however as the expressiveness of these models grows, so does the difficulty of performing fast and accurate inference over their parameters. This paper presents alternative neural approaches to topic modelling by providing parameterisable distributions over topics which permit training by backpropagation in the framework of neural variational inference. In addition, with the help of a stick-breaking construction, we propose a recurrent network that is able to discover a notionally unbounded number of topics, analogous to Bayesian non-parametric topic models. Experimental results on the MXM Song Lyrics, 20NewsGroups and Reuters News datasets demonstrate the effectiveness and efficiency of these neural topic models.

0
8
下载
预览

Generative Adversarial Networks (GAN) have shown great promise in tasks like synthetic image generation, image inpainting, style transfer, and anomaly detection. However, generating discrete data is a challenge. This work presents an adversarial training based correlated discrete data (CDD) generation model. It also details an approach for conditional CDD generation. The results of our approach are presented over two datasets; job-seeking candidates skill set (private dataset) and MNIST (public dataset). From quantitative and qualitative analysis of these results, we show that our model performs better as it leverages inherent correlation in the data, than an existing model that overlooks correlation.

0
5
下载
预览

In multi-task learning, a learner is given a collection of prediction tasks and needs to solve all of them. In contrast to previous work, which required that annotated training data is available for all tasks, we consider a new setting, in which for some tasks, potentially most of them, only unlabeled training data is provided. Consequently, to solve all tasks, information must be transferred between tasks with labels and tasks without labels. Focusing on an instance-based transfer method we analyze two variants of this setting: when the set of labeled tasks is fixed, and when it can be actively selected by the learner. We state and prove a generalization bound that covers both scenarios and derive from it an algorithm for making the choice of labeled tasks (in the active case) and for transferring information between the tasks in a principled way. We also illustrate the effectiveness of the algorithm by experiments on synthetic and real data.

0
3
下载
预览
小贴士
相关论文
Antonio Liguori,Romana Markovic,Thi Thu Ha Dam,Jérôme Frisch,Christoph van Treeck,Francesco Causone
0+阅读 · 1月21日
Petru Soviany,Radu Tudor Ionescu,Paolo Rota,Nicu Sebe
0+阅读 · 1月20日
Zhi Chen,Ruihong Qiu,Sen Wang,Zi Huang,Jingjing Li,Zheng Zhang
0+阅读 · 1月20日
Contrastive Transformation for Self-supervised Correspondence Learning
Ning Wang,Wengang Zhou,Houqiang Li
10+阅读 · 2020年12月9日
One-shot Information Extraction from Document Images using Neuro-Deductive Program Synthesis
Vishal Sunder,Ashwin Srinivasan,Lovekesh Vig,Gautam Shroff,Rohit Rahul
3+阅读 · 2019年6月6日
Shotaro Shiba Funai,Dimitrios Giataganas
3+阅读 · 2018年10月18日
Kernelized Hashcode Representations for Biomedical Relation Extraction
Sahil Garg,Aram Galstyan,Greg Ver Steeg,Irina Rish,Guillermo Cecchi,Shuyang Gao
3+阅读 · 2018年8月17日
Yishu Miao,Edward Grefenstette,Phil Blunsom
8+阅读 · 2018年5月21日
Shreyas Patel,Ashutosh Kakadiya,Maitrey Mehta,Raj Derasari,Rahul Patel,Ratnik Gandhi
5+阅读 · 2018年4月3日
Anastasia Pentina,Christoph H. Lampert
3+阅读 · 2017年6月8日
相关VIP内容
专知会员服务
23+阅读 · 2020年12月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
37+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
9+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
6+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
7+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
26+阅读 · 2019年1月3日
已删除
将门创投
7+阅读 · 2018年12月12日
Disentangled的假设的探讨
CreateAMind
7+阅读 · 2018年12月10日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
16+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
20+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
3+阅读 · 2018年4月15日
Top