Causal discovery from observational data is a very challenging, often impossible, task. However, estimating the causal structure is possible under certain assumptions on the data-generating process. Many commonly used methods rely on the additivity of the noise in the structural equation models. Additivity implies that the variance or the tail of the effect, given the causes, is invariant; the cause only affects the mean. In many applications, it is desirable to model the tail or other characteristics of the random variable since they can provide different information about the causal structure. However, models for causal inference in such cases have received only very little attention. It has been shown that the causal graph is identifiable under different models, such as linear non-Gaussian, post-nonlinear, or quadratic variance functional models. We introduce a new class of models called the Conditional Parametric Causal Models (CPCM), where the cause affects the effect in some of the characteristics of interest.We use the concept of sufficient statistics to show the identifiability of the CPCM models, focusing mostly on the exponential family of conditional distributions.We also propose an algorithm for estimating the causal structure from a random sample under CPCM. Its empirical properties are studied for various data sets, including an application on the expenditure behavior of residents of the Philippines.


翻译:在非加性条件参数因果模型下的因果图可识别性 从观察数据中推断因果关系是非常具有挑战性的,通常是不可能的。然而,在数据生成过程的某些假设下,估计因果结构是可能的。许多常用方法依赖于结构方程模型中噪声的可加性。可加性意味着,在给定原因的情况下,效应的方差或尾部不变;原因仅影响平均值。在许多应用中,希望对随机变量的尾部或其他特征进行建模,因为它们可以提供关于因果结构的不同信息。然而,用于此类情况的因果推断模型仅受到极少关注。已经表明,在不同模型(如线性非高斯模型,后非线性模型或二次变差函数模型)下,因果图是可识别的。我们引入了一个新的模型类别,称为条件参数因果模型(CPCM),其中原因在一些感兴趣的特征方面影响效应。我们使用充分统计量的概念来展示CPCM模型的可识别性,主要关注条件分布的指数族。我们还提出了一种算法,用于从随机样本估计CPCM下的因果结构。对不同的数据集进行了研究,包括一个关于菲律宾居民支出行为的应用。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
26+阅读 · 2022年12月26日
因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
专知会员服务
56+阅读 · 2021年1月26日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
用 LDA 和 LSA 两种方法来降维和做 Topic 建模
AI研习社
13+阅读 · 2018年8月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月14日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
40+阅读 · 2022年9月19日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
108+阅读 · 2020年2月5日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
用 LDA 和 LSA 两种方法来降维和做 Topic 建模
AI研习社
13+阅读 · 2018年8月24日
相关论文
Arxiv
0+阅读 · 2023年5月14日
Arxiv
0+阅读 · 2023年5月12日
Arxiv
40+阅读 · 2022年9月19日
Arxiv
10+阅读 · 2021年11月3日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
108+阅读 · 2020年2月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
26+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员