Privacy preservation has served as a key metric in designing Nash equilibrium (NE) computation algorithms. Although differential privacy (DP) has been widely employed for privacy guarantees, it does not exploit prior distributional knowledge of datasets and is ineffective in assessing information leakage for correlated datasets. To address these concerns, we establish a pointwise maximal leakage (PML) framework when computing NE in aggregative games. By incorporating prior knowledge of players' cost function datasets, we obtain a precise and computable upper bound of privacy leakage with PML guarantees. In the entire view, we show PML refines DP by offering a tighter privacy guarantee, enabling flexibility in designing NE computation. Also, in the individual view, we reveal that the lower bound of PML can exceed the upper bound of DP by constructing specific correlated datasets. The results emphasize that PML is a more proper privacy measure than DP since the latter fails to adequately capture privacy leakage in correlated datasets. Moreover, we conduct experiments with adversaries who attempt to infer players' private information to illustrate the effectiveness of our framework.


翻译:隐私保护已成为设计纳什均衡计算算法的关键指标。尽管差分隐私已被广泛用于提供隐私保障,但其未能利用数据集的先验分布知识,且在评估相关数据集的信息泄漏方面存在不足。为解决这些问题,我们在计算聚合博弈的纳什均衡时建立了一个逐点最大泄漏框架。通过纳入参与者成本函数数据集的先验知识,我们获得了具有PML保障的隐私泄漏的精确可计算上界。从整体视角看,我们证明PML通过提供更严格的隐私保障改进了差分隐私,为纳什均衡计算的设计提供了灵活性。同时,从个体视角看,我们通过构建特定的相关数据集,揭示了PML的下界可能超过差分隐私的上界。这些结果强调PML是比差分隐私更合适的隐私度量,因为后者未能充分捕捉相关数据集中的隐私泄漏。此外,我们通过模拟试图推断参与者私有信息的对手进行了实验,以说明我们框架的有效性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员