Data sparsity is an important issue for click-through rate (CTR) prediction, particularly when user-item interactions is too sparse to learn a reliable model. Recently, many works on cross-domain CTR (CDCTR) prediction have been developed in an effort to leverage meaningful data from a related domain. However, most existing CDCTR works have an impractical limitation that requires homogeneous inputs (\textit{i.e.} shared feature fields) across domains, and CDCTR with heterogeneous inputs (\textit{i.e.} varying feature fields) across domains has not been widely explored but is an urgent and important research problem. In this work, we propose a cross-domain augmentation network (CDAnet) being able to perform knowledge transfer between two domains with \textit{heterogeneous inputs}. Specifically, CDAnet contains a designed translation network and an augmentation network which are trained sequentially. The translation network is able to compute features from two domains with heterogeneous inputs separately by designing two independent branches, and then learn meaningful cross-domain knowledge using a designed cross-supervised feature translator. Later the augmentation network encodes the learned cross-domain knowledge via feature translation performed in the latent space and fine-tune the model for final CTR prediction. Through extensive experiments on two public benchmarks and one industrial production dataset, we show CDAnet can learn meaningful translated features and largely improve the performance of CTR prediction. CDAnet has been conducted online A/B test in image2product retrieval at Taobao app over 20days, bringing an absolute \textbf{0.11 point} CTR improvement and a relative \textbf{1.32\%} GMV increase.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
38+阅读 · 2020年12月2日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员